Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Ta thấy với a,b >0 thì \(\frac{a}{b}<\frac{a+n}{b+n}\), với a,b<0 thì \(\frac{a}{b}>\frac{a+\left(-n\right)}{b+\left(-n\right)}\) \(\left(n\in Z;\right)n>0\)
Vậy ta sắp xếp như sau:
\(-\frac{8}{9};-\frac{6}{7};-\frac{4}{5};-\frac{1}{2};\frac{2}{3};\frac{3}{4};\frac{5}{6};\frac{7}{8};\frac{9}{10}\)
b, Có:
\(\frac{0}{23}=0\)
\(-\frac{14}{5}<-1<\frac{-15}{19}<-\frac{15+\left(-2\right)}{19+\left(-2\right)}=-\frac{13}{17}\)
\(\frac{5}{2}>\frac{4}{2}=2>\frac{11}{7}=\frac{99}{63}>\frac{13}{9}=\frac{91}{63}\)
Vậy ta sắp xếp như sau:
\(-\frac{14}{5};-\frac{15}{19};-\frac{13}{17};0;\frac{13}{9};\frac{11}{7};\frac{5}{2}\)
Đáp án A. Theo quy luật : cứ sau vòng lặp 2 số (vd 7-8) thì số thứ nhất giảm đi 1 đơn vị (vd 7->6) và số thứ 2 tăng lên 1 đơn vị (vd 8->9)
\(\frac{-5}{7}.\frac{2}{11}+\frac{-5}{7}.\frac{9}{11}+\frac{12}{7}=\frac{-5}{7}.\left(\frac{2}{11}+\frac{9}{11}\right)+\frac{12}{7}=\frac{-5}{7}.1+\frac{12}{7}=\frac{-5}{7}+\frac{12}{7}=-1\)
Chào bạn, bạn hãy theo dõi bài giải của mình nhé!
\(P=\frac{\frac{2}{3}-\frac{1}{4}+\frac{5}{11}}{\frac{5}{12}+1-\frac{7}{11}}=\frac{\frac{88}{132}-\frac{33}{132}+\frac{60}{132}}{\frac{55}{132}+\frac{132}{132}-\frac{84}{132}}=\frac{\frac{115}{132}}{\frac{103}{132}}=\frac{115}{132}:\frac{103}{132}=\frac{115}{132}\cdot\frac{132}{103}=\frac{115\cdot132}{132\cdot103}=\frac{115}{103}\)
Chúc bạn học tốt!
B=522+313−12413−211+32
Đặt \(S=\frac{5}{22}+\frac{3}{13}-\frac{1}{2}\)
=> S= \(\frac{-6}{143}\)
Đặt \(H=\frac{4}{13}-\frac{2}{11}+\frac{3}{2}\)
=> H = \(\frac{465}{286}\)
Khi đó B = \(\frac{\frac{-6}{143}}{\frac{465}{286}}\)=\(\frac{-4}{155}\)
a) \(\frac{7}{11}-\left(\frac{3}{5}+\frac{7}{11}\right)=-\frac{3}{5}\)
b) \(\left(\frac{11}{22}+\frac{5}{11}\right)-\frac{19}{22}=\frac{1}{11}\)
c) \(\frac{2}{9}.\frac{4}{5}+\frac{2}{9}.\frac{14}{5}=\frac{4}{5}\)
d) \(-\frac{3}{2}.\frac{7}{10}-\frac{3}{2}.\frac{1}{10}=-\frac{6}{5}\)
e) \(\left(0,75-1+\frac{1}{4}\right):\left(\frac{1515}{1616}+\frac{1616}{1717}\right)=0\)