K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 6 2019

a) \(x+xy-y=8\)

\(\Leftrightarrow x.\left(1+y\right)-y=8\)

\(\Leftrightarrow x.\left(1+y\right)-y-1=8-1\)

\(\Leftrightarrow x.\left(1+y\right)-\left(1+y\right)=7\)

\(\Leftrightarrow\left(1+y\right).\left(x-1\right)=7\)

Lập bảng tìm tiếp

19 tháng 6 2019

b) Ta có: \(\hept{\begin{cases}\left(x+2\right)^2\ge0\forall x\\\left(2y-6\right)^4\ge0\forall x\end{cases}}\)

\(\Rightarrow\left(x+2\right)^2+\left(2y-6\right)^4\ge0\forall x\)

Do đó \(\left(x+2\right)^2+\left(2y-6\right)^4=0\)

\(\Leftrightarrow\hept{\begin{cases}\left(x+2\right)^2=0\\\left(2y-6\right)^4=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-2\\y=3\end{cases}}}\)

Vậy ...

9 tháng 9 2019

a) \(2\left(x+5\right)-3x=2x+1\)

\(\left(x+2\right)+\left(x-2x+1\right)\ge0\)

\(=\left(x+2\right)+\left(x-2+1\right)-3\ge-1\)

b)

  Bài này ta sử dụng kĩ thuật tham số hóa.

  Giả sử A đạt GTNN tại a= x, b= y, c= z khi đó x + y  +z = 3.            (1)

  Áp dụng bất đẳng thức Cauchy cho 2 số dương ta có:

       a2+x2≥2axa2+x2≥2ax.          4a2≥8ax−4x24a2≥8ax−4x2.

       b2+y2≥2byb2+y2≥2by. =>    6b2≥12by−6y26b2≥12by−6y2.

       c2+z2≥2zc2+z2≥2z.           3c2≥6cz−3z23c2≥6cz−3z2.

 => A≥(8ax+12by+6cz)−(4x+6y+3z)A≥(8ax+12by+6cz)−(4x+6y+3z).

  Để sử dụng được GT thì 8x = 12y = 6z.                                          (2)

  Từ (1); (2) ta tìm ra được x, y, z=>...

c,d chịu 

\(x=-1\)

\(A=3x-x^2\)

\(=-\left(x^2-2.x.\frac{3}{2}+\left(\frac{3}{2}\right)^2-\frac{9}{4}\right)\)

\(=-\left(\left(x-\frac{3}{2}\right)^2-\frac{9}{4}\right)\)

\(=\frac{9}{4}-\left(x-\frac{3}{2}\right)^2\ge\frac{9}{4}\)

Min A = \(\frac{9}{4}\)khi \(x-\frac{3}{2}=0=>x=\frac{3}{2}\)

\(B=25+2x-x^2\)

\(=-\left(x^2-2x+1-26\right)\)

\(=-\left(\left(x-1\right)^2-26\right)\)

\(=26-\left(x-1\right)^2\ge26\)

Min A = 26 khi \(x-1=0=>x=1\)

\(C=x^2-5x+19\)

\(=x^2-2.x.\frac{5}{2}+\left(\frac{5}{2}\right)^2+\frac{51}{4}\)

\(=\left(x+\frac{5}{2}\right)^2+\frac{51}{4}\ge\frac{51}{4}\)

Min C = \(\frac{51}{4}\)khi \(x+\frac{5}{2}=0=>x=\frac{-5}{2}\)

@@@ nha các bạn . Thanks

28 tháng 6 2016

cảm ơn bạn nhiều lắm

30 tháng 1 2016

lop may rui bai de nhu vay ma ko lam duoc

 

4 tháng 3 2020

x2+5.x=0

x.x+5.x=0

x.(x+5)=0

*x=0

*x+5=0

     x=0-5

     x=-5

Vậy x=0 hoặc x=-5

31 tháng 1 2021

1, \(\left(3x-6\right)\left(2x-10\right)=0\)

\(\Leftrightarrow3x-6=0or2x-10=0\Leftrightarrow x=3orx=5\)

or là từ '' hoặc '' 

2, \(7\left(x+5\right)+10=5x-11\)

\(\Leftrightarrow7x+35+10=5x-11\)

\(\Leftrightarrow7x-5x=-11-10-35\)

\(\Leftrightarrow2x=-56\Leftrightarrow x=-28\)