Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(x+xy-y=8\)
\(\Leftrightarrow x.\left(1+y\right)-y=8\)
\(\Leftrightarrow x.\left(1+y\right)-y-1=8-1\)
\(\Leftrightarrow x.\left(1+y\right)-\left(1+y\right)=7\)
\(\Leftrightarrow\left(1+y\right).\left(x-1\right)=7\)
Lập bảng tìm tiếp
b) Ta có: \(\hept{\begin{cases}\left(x+2\right)^2\ge0\forall x\\\left(2y-6\right)^4\ge0\forall x\end{cases}}\)
\(\Rightarrow\left(x+2\right)^2+\left(2y-6\right)^4\ge0\forall x\)
Do đó \(\left(x+2\right)^2+\left(2y-6\right)^4=0\)
\(\Leftrightarrow\hept{\begin{cases}\left(x+2\right)^2=0\\\left(2y-6\right)^4=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-2\\y=3\end{cases}}}\)
Vậy ...
a) \(2\left(x+5\right)-3x=2x+1\)
\(\left(x+2\right)+\left(x-2x+1\right)\ge0\)
\(=\left(x+2\right)+\left(x-2+1\right)-3\ge-1\)
b)
Bài này ta sử dụng kĩ thuật tham số hóa.
Giả sử A đạt GTNN tại a= x, b= y, c= z khi đó x + y +z = 3. (1)
Áp dụng bất đẳng thức Cauchy cho 2 số dương ta có:
a2+x2≥2axa2+x2≥2ax. 4a2≥8ax−4x24a2≥8ax−4x2.
b2+y2≥2byb2+y2≥2by. => 6b2≥12by−6y26b2≥12by−6y2.
c2+z2≥2zc2+z2≥2z. 3c2≥6cz−3z23c2≥6cz−3z2.
=> A≥(8ax+12by+6cz)−(4x+6y+3z)A≥(8ax+12by+6cz)−(4x+6y+3z).
Để sử dụng được GT thì 8x = 12y = 6z. (2)
Từ (1); (2) ta tìm ra được x, y, z=>...
c,d chịu
\(x=-1\)
\(A=3x-x^2\)
\(=-\left(x^2-2.x.\frac{3}{2}+\left(\frac{3}{2}\right)^2-\frac{9}{4}\right)\)
\(=-\left(\left(x-\frac{3}{2}\right)^2-\frac{9}{4}\right)\)
\(=\frac{9}{4}-\left(x-\frac{3}{2}\right)^2\ge\frac{9}{4}\)
Min A = \(\frac{9}{4}\)khi \(x-\frac{3}{2}=0=>x=\frac{3}{2}\)
\(B=25+2x-x^2\)
\(=-\left(x^2-2x+1-26\right)\)
\(=-\left(\left(x-1\right)^2-26\right)\)
\(=26-\left(x-1\right)^2\ge26\)
Min A = 26 khi \(x-1=0=>x=1\)
\(C=x^2-5x+19\)
\(=x^2-2.x.\frac{5}{2}+\left(\frac{5}{2}\right)^2+\frac{51}{4}\)
\(=\left(x+\frac{5}{2}\right)^2+\frac{51}{4}\ge\frac{51}{4}\)
Min C = \(\frac{51}{4}\)khi \(x+\frac{5}{2}=0=>x=\frac{-5}{2}\)
@@@ nha các bạn . Thanks
x2+5.x=0
x.x+5.x=0
x.(x+5)=0
*x=0
*x+5=0
x=0-5
x=-5
Vậy x=0 hoặc x=-5
1, \(\left(3x-6\right)\left(2x-10\right)=0\)
\(\Leftrightarrow3x-6=0or2x-10=0\Leftrightarrow x=3orx=5\)
or là từ '' hoặc ''
2, \(7\left(x+5\right)+10=5x-11\)
\(\Leftrightarrow7x+35+10=5x-11\)
\(\Leftrightarrow7x-5x=-11-10-35\)
\(\Leftrightarrow2x=-56\Leftrightarrow x=-28\)