Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) \(x^4-6x^3-x^2+54x-72=0\)
\(\Leftrightarrow x^3\left(x-2\right)-4x^2\left(x-2\right)-9x\left(x-2\right)+36\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^3-4x^2-9x+36\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left[x^2\left(x-4\right)-9\left(x-4\right)\right]=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-4\right)\left(x^2-9\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-4\right)\left(x-3\right)\left(x+3\right)=0\)
Tự làm nốt...
2) \(x^4-5x^2+4=0\)
\(\Leftrightarrow x^2\left(x^2-1\right)-4\left(x^2-1\right)=0\)
\(\Leftrightarrow\left(x^2-1\right)\left(x^2-4\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x-2\right)\left(x+2\right)=0\)
Tự làm nốt...
\(x^4-2x^3-6x^2+8x+8=0\)
\(\Leftrightarrow x^3\left(x-2\right)-6x\left(x-2\right)-4\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^3-6x-4\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left[x^2\left(x+2\right)-2x\left(x+2\right)-2\left(x+2\right)\right]=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left(x^2-2x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left[\left(x-1\right)^2-\left(\sqrt{3}\right)^2\right]=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left(x-1-\sqrt{3}\right)\left(x-1+\sqrt{3}\right)=0\)
...
\(2x^4-13x^3+20x^2-3x-2=0\)
\(\Leftrightarrow2x^3\left(x-2\right)-9x^2\left(x-2\right)+2x\left(x-2\right)+\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(2x^3-9x^2+2x+1\right)=0\)
Bí
\(x^2+4x+3\)
\(=\left(x+1\right)\left(x+3\right)\)
\(2x^2+3x-5\)
\(\left(x-1\right)\left(x+\frac{5}{2}\right)\)
a. (5x-1)2 - (5x-4) (5x-4) +7
= (5x-1)2 - (5x-4)2 + 7
=[(5x-1)+(5x-4)] [(5x-1)-(5x-4)] +7 ( đoạn này bỏ cx đc)
=(10x-5) .3+7
=30x-15+7
=30x-8
1.
Đặt \(x^2-5x=a\Rightarrow a^2=\left(x^2-5x\right)^2\)
Thay vào pt:
\(\Rightarrow a^2+10a+24=0\)
\(\Leftrightarrow a^2+6a+4a+24=0\)
\(\Leftrightarrow a\left(a+6\right)+4\left(a+6\right)=0\)
\(\Leftrightarrow\left(a+6\right)\left(a+4\right)=0\)
\(\Leftrightarrow\left(x^2-5x+6\right)\left(x^2-5x+4\right)=0\)
\(\Leftrightarrow\left(x^2-3x-2x+6\right)\left(x^2-4x-x+4\right)=0\)
\(\Leftrightarrow\left[x\left(x-3\right)-2\left(x-3\right)\right]\left[x\left(x-4\right)-\left(x-4\right)\right]=0\)
\(\Leftrightarrow\left(x-3\right)\left(x-2\right)\left(x-4\right)\left(x-1\right)=0\)
\(\Rightarrow x-3=0,x-2=0,x-4=0,x-1=0\)
\(\Rightarrow x=3,x=2,x=4,x=1\)
T I C K mình sẽ giải típ cho cảm ơn
\(5X\left(X-2020\right)+X=2020\)
\(\Leftrightarrow5X^2-10100X+X=2020\)
\(\Leftrightarrow5X^2-10099X=2020\)
\(\Leftrightarrow5X^2-10099X-2020=0\)
\(\Leftrightarrow5X^2-10100X+x-2020=0\)
\(\Leftrightarrow5X\left(X-2020\right)+X-2020=0\)
\(\Leftrightarrow\left(X-2020\right)\left(5X+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=2020\\x=-\frac{1}{5}\end{cases}}\)
\(4\left(x-5\right)^2-\left(2x+1\right)^2=0\)
\(\Leftrightarrow\left[2\left(x-5\right)\right]^2-\left(2x+1\right)^2=0\)
\(\Leftrightarrow\left[2\left(x-5\right)-2x-1\right]\left[2\left(x-5\right)+2x+1\right]=0\)
\(\Leftrightarrow\left(2x-10-2x-1\right)\left(2x-10+2x+1\right)=0\)
\(\Leftrightarrow-11\left(4x-9\right)=0\)
\(\Leftrightarrow x=\frac{9}{4}\)
5x2 - 4(x2 - 2x + 1) - 5 = 0
=> 5x2 - 4x2 + 8x - 4 - 5 = 0
=> x2 + 8x - 9 = 0
=> x2 + 9x - x - 9 = 0
=> x(x + 9) - (x + 9) = 0
=> (x + 9)(x - 1) = 0
=> x + 9 = 0 => x = -9
hoặc x - 1 = 0 = > x = 1
Vậy x = -9, x = 1
\(5x^2-4\left(x^2-2x+1\right)-5=0\)
\(\left(5x^2-5\right)-4\left(x^2-2.1.x+1^2\right)=0\)
\(5\left(x^2-1\right)-4\left(x-1\right)^2=0\)
\(5\left(x-1\right)\left(x+1\right)-4\left(x-1\right)\left(x-1\right)=0\)
\(\left[5\left(x+1\right)-4\left(x-1\right)\right]\left(x-1\right)=0\)
\(\left(5x+5-4x+4\right)\left(x-1\right)=0\)
\(\left(x+9\right)\left(x-1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x+9=0\\x-1=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=-9\\x=1\end{cases}}\)
Vậy \(\orbr{\begin{cases}x=-9\\x=1\end{cases}}.\)
a)
\(\dfrac{2x+3}{x}+\dfrac{x+1}{x-2}=3\) ( ĐK : \(x\ne0;x\ne2\))
\(\Rightarrow\dfrac{\left(2x+3\right)\left(x-2\right)}{x\left(x-2\right)}+\dfrac{x\left(x+1\right)}{x\left(x-2\right)}=3\)
\(\Rightarrow\dfrac{2x^2-4x+3x-6+x^2+x}{x\left(x-2\right)}=3\)
\(\Rightarrow\dfrac{3x^2-6}{x\left(x-2\right)}=3\)
\(\Rightarrow3x^2-6=3\left(x^2-2x\right)=3x^2-6x\)
\(\Rightarrow3x^2-6-3x^2+6x=0\)
\(\Rightarrow6x-6=0\)
\(\Rightarrow x=1\)
Vậy nghiệm của phương trình là x=1
b) Ta có :
\(x^3-3x^2+5x-3=0\)
\(\Rightarrow x^3-2x^2+3x-x^2+2x-3=0\)
\(\Rightarrow x\left(x^2-2x+3\right)-\left(x^2-2x+3\right)=0\)
\(\Rightarrow\left(x-1\right)\left(x^2-2x+3\right)=0\)
Vì \(x^2-2x+3=x^2-2x+1+2=\left(x-1\right)^2+2\ge2\)
=> x - 1 = 0
=> x = 1
Vậy x = 1 là nghiệm của phương trình
a: \(5x-20x^2=0\)
\(\Leftrightarrow5x\left(1-4x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{1}{4}\end{matrix}\right.\)
c: \(x\left(x-3\right)-5x+15=0\)
\(\Leftrightarrow\left(x-3\right)\left(x-5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=5\end{matrix}\right.\)