Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài 2
Ta có:
\(A=\left|x-102\right|+\left|2-x\right|\Rightarrow A\ge\left|x-102+2-x\right|=-100\Rightarrow GTNNcủaAlà-100\)đạt được khi \(\left|x-102\right|.\left|2-x\right|=0\)
Trường hợp 1: \(x-102>0\Rightarrow x>102\)
\(2-x>0\Rightarrow x< 2\)
\(\Rightarrow102< x< 2\left(loại\right)\)
Trường hợp 2:\(x-102< 0\Rightarrow x< 102\)
\(2-x< 0\Rightarrow x>2\)
\(\Rightarrow2< x< 102\left(nhận\right)\)
Vậy GTNN của A là -100 đạt được khi 2<x<102.
T/C của gttđ là >= 0 nên
a) GTNN = -4
b) GTLN = 2
c) GTNN = 2
a)B=[3+2(12-x)]/(12-x)=2+3/(12-x)
B lớn nhất =2+3=5 khi x=11
b) A=2-(x-5)/(x-5)=2/(x-5)-1=-2-1=-3 khi x=4
c)---> chịu
ta có (3lxl+2)/(4lxl-5) đạt giá trị lớn nhất khi mẫu bằng 1
=>4x-5=1
x=1+5=6
x=6/4=3/2
vậy x =3/2
thay x vào bt ta đc 3x+2=3*3/2+2=6,5