Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(D=\frac{1}{7}+\frac{1}{7^2}+\frac{1}{7^3}+...+\frac{1}{7^{100}}\)
\(\Rightarrow7D=1+\frac{1}{7}+\frac{1}{7^2}+...+\frac{1}{7^{99}}\)
\(\Rightarrow7D-D=\left(1+\frac{1}{7}+\frac{1}{7^2}+...+\frac{1}{7^{99}}\right)-\left(\frac{1}{7}+\frac{1}{7^2}+\frac{1}{7^3}+...+\frac{1}{7^{100}}\right)\)
\(\Rightarrow6D=1-\frac{1}{7^{100}}\)
\(\Rightarrow D=\left(1-\frac{1}{7^{100}}\right).\frac{1}{6}\)
a) 4 + ( 5x + 2 ) : 3 = 58
( 5x + 2 ) : 3 = 58 - 4
( 5x + 2 ) : 3 = 54
( 5x + 2 ) = 54 . 3
( 5x + 2 ) = 162
5x = 162 - 2
5x = 160
x = 160 : 5
x = 32
a) x = 32.
b) x = 5.
c) a = -1;0;1. Riêng câu này thì mình chứ chắc đứng nha bạn.
Đặt A = \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}\)
- Vì :
\(\frac{1}{2^2}< \frac{1}{1.2}\)
\(\frac{1}{3^2}< \frac{1}{2.3}\)
...................
\(\frac{1}{n^2}< \frac{1}{n\left(n-1\right)}\)
Cộng vế với vế , ta suy ra
A < \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{\left(n-1\right)n}\)= \(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-.....+\frac{1}{n-1}-\frac{1}{n}\)
= \(1-\frac{1}{n}< 1\)
=> A<1 ( đpcm )
Ta có:\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}\)>\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{\left(n-1\right).n}\)=\(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n-1}-\frac{1}{n}\)=\(\frac{1}{1}-\frac{1}{n}\)<1 => \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}< 1\)
Vậy \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}< 1\)
\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(< 1-\frac{1}{100}< 1\)
=> đpcm
Ta có: \(A=1+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}\)
\(\Rightarrow A< 1+\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{\left(n-1\right)\cdot n}\)
\(\Rightarrow A< 1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n-1}-\frac{1}{n}\)
\(\Rightarrow A< 1+1-\frac{1}{n}=2-\frac{1}{n}\Rightarrow A< 2\left(ĐPCM\right)\)