Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=-1++(-1)+..+-(1) có 50 số -1
=>A=-1x50=-50
B=(1-2-3+4)+(5-6-7+8)+...+(97-98-99+100)
B=0+0+0+..+0
B=0
C=2^100-(2^99+2^98+...+1)
C=2^100-(2^100-1)
C=1
\(A=2^3+4^3+6^3+...+100^3\)
\(2^3A=2^3\left(2^3+4^3+6^3+...+100^3\right)\)
\(8A=4^3+6^3+8^3+...+102^3\)
\(8A-A=7A=102^3-2^3\)
\(A=\frac{102^3-2^3}{7}\)
C=\(\frac{1}{100}-\frac{1}{100.99}-\frac{1}{99.98}-\frac{1}{98.97}-...-\frac{1}{3.2}-\frac{1}{2.1}\)
=\(\frac{1}{100}-\left(\frac{1}{2.1}+\frac{1}{2.3}+...+\frac{1}{97.98}+\frac{1}{98.99}+\frac{1}{99.100}\right)\)
=\(\frac{1}{100}-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{97}-\frac{1}{98}+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\right)\)
=\(\frac{1}{100}-\left(1-\frac{1}{100}\right)\)
=\(\frac{1}{100}-\frac{99}{100}\)
=\(\frac{-98}{100}=\frac{-49}{50}\)
C=1/100 -1/100.99 -1/99.98 -1/98.97-......- 1/3.2 -1/2.1
= 1/100 - (1/100.99 + 1/99.98 + 1/98.97-......+ 1/3.2 +1/2.1)
Đặt A = 1/100.99 + 1/99.98 + 1/98.97-......+ 1/3.2 +1/2.1 => C = 1/100 - A
Dễ thấy 1/2.1 = 1/1 - 1/2
1/3.2 = 1/2 - 1/3
.....................
1/99.98 = 1/98 - 1/99
1/100.99 = 1/99 - 1/100
=> cộng từng vế với vế ta
1/2 + 2/3 + 3/4 + 4/5 + 5/6 + 6/7 + 7/8 + 8/9 + ........+ 95/96 + 96/97 + 97/98 + 98/99 + 99/100 = ?
Số các số hạng là:
(2000 - 100) : 1 + 1 = 1901
Tổng là:
(2000 + 100) x 1901 : 2 = 1996050
Đáp số : 1996050
A = 2100- 299 + 298 - 297 + ... + 22 - 2
=> 2A = 2101 - 2100 + 299 - 298 + ... + 23 - 22
Khi đó 2A + A = (2101 - 2100 + 299 - 298 + ... + 23 - 22) + (2100- 299 + 298 - 297 + ... + 22 - 2)
=> 3A = 2101 - 2
=> \(A=\frac{2^{201}-2}{3}\)
b) Ta có B = 3100- 399 + 398 - 397 + ... + 32 - 3 + 1
=> 3B = 3101 - 3100 + 399 - 398 + ... + 33 - 32 + 3
Khi đó 3B + B = (3101 - 3100 + 399 - 398 + ... + 33 - 32 + 3) + (3100- 399 + 398 - 397 + ... + 32 - 3 + 1)
=> 4B = 3101 + 1
=> B = \(\frac{3^{101}+1}{4}\)
a) \(A=2^{100}-2^{99}+2^{98}-2^{97}+...+2^2-2\)
=> \(2A=2^{101}-2^{100}+2^{99}-2^{98}+...+2^3-2^2\)
=> \(2A+A=\left(2^{101}-2^{100}+...-2^2\right)+\left(2^{100}-2^{99}+...-2\right)\)
<=> \(3A=2^{101}-2\)
=> \(A=\frac{2^{101}-2}{3}\)
b) \(B=3^{100}-3^{99}+3^{98}-3^{97}+...+3^2-3+1\)
=> \(3A=3^{101}-3^{100}+3^{99}-3^{98}+...+3^3-3^2+3\)
=> \(3A+A=\left(3^{101}-3^{100}+...+3\right)+\left(3^{100}-3^{99}+...+1\right)\)
<=> \(4A=3^{101}+1\)
=> \(A=\frac{3^{101}+1}{4}\)
Đặt A=1.2.3+2.3.4+3.4.5+4.5.6+...+98.99.100
4A=(1.2.3+2.3.4+3.4.5+4.5.6+...+98.99.100)4
4A=1.2.3(4-0)+2.3.4(5-1)+3.4.5(6-2)+4.5.6(7-3)+...+98.99.100(101-97)
4A=1.2.3.4+2.3.4.5-1.2.3.4+3.4.5.6-2.3.4.5+4.5.6.7-3.4.5.6+...+98.99.100.101-97.98.99.100
4A=1.2.3.4-1.2.3.4+2.3.4.5-2.3.4.5+3.4.5.6-3.4.5.6+...+97.98.99.100-97.98.99.100+98.99.100.101
4A=98.99.100.101
=>A=98.99.100.101/4
=> A=24497550
@ Thiên bình có 102 copy thì phải copy đúng bài chứ bạn