Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{29}{9}.\frac{109}{7}-\frac{29}{9}.\frac{57}{7}+\frac{29}{9}.\frac{12}{7}-\frac{29}{9}.\frac{1}{7}\)
= \(\frac{29}{9}.\left(\frac{109}{7}-\frac{57}{7}+\frac{12}{7}-\frac{1}{7}\right)\)
= \(\frac{29}{9}.\frac{63}{7}\)
=\(\frac{29}{9}.9\)
=\(\frac{29.9}{9}\)
=\(\frac{261}{9}\)
= \(29\)
hứ 7 nộp rùi giải giúp mình à
Được cập nhật 10 giờ trước (09:01)
Toán lớp 6
Chau Nguyen Van 9 giờ trước (09:40)
Báo cáo sai phạm
299 .1097 −299 .577 +299 .127 −299 .17
= 299 .(1097 −577 +127 −17 )
= 299 .637
=299 .9
=29.99
=2619
=
d)
đặt A = 1 + 2 + 22 + ... + 280
2A = 2 + 22 + 23 + ... + 281
2A - A = ( 2 + 22 + 23 + ... + 281 ) - ( 1 + 2 + 22 + ... + 280 )
A = 281 - 1 > 281 - 2
e)
đặt \(A=\frac{3}{4}+\frac{8}{9}+\frac{15}{16}+...+\frac{899}{900}\)
\(A=\left(1-\frac{1}{4}\right)+\left(1-\frac{1}{9}\right)+\left(1-\frac{1}{16}\right)+...+\left(1-\frac{1}{900}\right)\)
\(A=\left(1+1+1+...+1\right)-\left(\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+...+\frac{1}{900}\right)\)
\(A=29-\left(\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+...+\frac{1}{900}\right)\)
đặt \(B=\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+...+\frac{1}{900}\)
\(B=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{30^2}\)
\(B< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{29.30}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{29}-\frac{1}{30}\)
\(=1-\frac{1}{30}=\frac{29}{30}< 1\)
\(\Rightarrow A< 29\)
So sánh C và D biết
C=1+13+13^2+...+13^13/1+13+13^2+...+13^12
D=1+11+11^2+...+11^13/1+11+11^2+...+11^12
a) \(\frac{8}{9}=1-\frac{1}{9}\)
\(\frac{108}{109}=1-\frac{1}{109}\)
Vì \(\frac{1}{9}>\frac{1}{109}\)
Nên \(1-\frac{1}{9}< 1-\frac{1}{109}\)
Vậy \(\frac{8}{9}< \frac{108}{109}\)
b)
\(\frac{97}{100}=\frac{97\cdot99}{100\cdot99}\)
\(\frac{98}{99}=\frac{98\cdot100}{99\cdot100}\)
\(\Rightarrow\frac{97}{100}< \frac{98}{99}\)
Ta có :
\(8^9< 9^9\)
\(7^9< 9^9\)
\(6^9< 9^9\)
\(......\)
\(1^9< 9^9\)
Cộng vế với vế ta được :
\(1^9+2^9+3^9+...+8^9< 9^9+9^9+9^9+...+9^9\) ( có tất cả 8 chữ số \(9^9\) )
\(\Rightarrow1^9+2^9+3^9+...+8^9< 8.9^9< 9.9^9=9^{10}\)
\(\Rightarrow1^9+2^9+3^9+...+8^9< 9^{10}\)
9-[109+(-9)]
=9-(109-9)
=9-100
=-91
hỏi gì mà double luôn vậy