K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 9 2017

Bài 1:

\(\frac{37.13-13}{24+37.12}=\frac{13.\left(37-1\right)}{2.12+37.12}=\frac{13.36}{12.\left(37+2\right)}=\frac{13.36}{12.39}=\frac{1.3}{1.3}=1\)

Bài 2:

\(\frac{101+100+...+2+1}{101-100+99-98+...+3-2+1}=\frac{\left[\left(101-1\right):1+1\right].\left(101+1\right):2}{\left(101-100\right)+\left(99-98\right)+...+\left(3-2\right)+1}\)\(=\frac{101.102:2}{1.\left[\left(101-1\right):2+1\right]}=\frac{5151}{1.51}=\frac{5151}{51}=101\)

\(\frac{3737.43-4343.37}{2+4+...+100}=\frac{37.101.43-43.101.37}{2+4+...+100}=\frac{0}{2+4+6+...+100}=0\)

27 tháng 12 2019

37.13-13  =13-13= 1

24+37.12  24+12  36

17 tháng 9 2017

a)Ta thấy: 101+100+99+98+...+3+2+1 có(101-1+1=101 số) tổng của tử số của A là: (101+1).101:2=5151.

Mẫu số cũng có số hạng bằng số hạng tử số,có số cặp ở mẫu là:101:2=50(dư 1 số)(số 1).

Vậy tổng mẫu số của A là : (101-100).50+1=51.Vậy A=5151:51=101 

b) 3737.43-4343.37/2+4+6+...+100=101.37.43-101.43.37/2+4+6+...+100=101.(43.37-37.43)/2+4+6+...+100=0/2+4+6+...+100=0

31 tháng 12 2018

a)Ta thấy: 101+100+99+98+...+3+2+1 có(101-1+1=101 số) tổng của tử số của A là:

(101+1).101:2=5151.

Mẫu số cũng có số hạng bằng số hạng tử số,có số cặp ở mẫu là:

101:2=50(dư 1 số)(số 1).

Vậy tổng mẫu số của A là :

(101-100).50+1=51.Vậy A=5151:51=101 

b) 3737.43-4343.37/2+4+6+...+100=101.37.43-101.43.37/2+4+6+...+100=101.(43.37-37.43)/2+4+6+...+100=0/2+4+6+...+100=0

28 tháng 9 2015

  B=\(\frac{3737.43-4343.37}{2+4+6+..+100}=\frac{101.37.43-101.43.37}{2+4+6+...+100}\)=\(\frac{101\left(37.43-43.37\right)}{2+4+6+...100}=\frac{0}{2+4+6+...+100}\)=0

C=\(\frac{101+100+99+...+2+1}{101-100+99-98+...+3-2+1}=\frac{\left(101+1\right)101:2}{\left(101-100\right)+\left(99-98\right)+...+\left(3-2\right)+1}\)(dưới mẫu có 51 số 1)

=\(\frac{5151}{51}\)=101
 

20 tháng 7 2017

Bằng 101 nhé bạn

\(A=\dfrac{101\cdot\dfrac{102}{2}}{\left(101-100\right)+99-98+...+3-2+1}\)

\(=\dfrac{101\cdot51}{1+1+...+1}=\dfrac{101\cdot51}{51}=101\)

\(B=\dfrac{37\cdot43\left(101-101\right)}{2+4+...+100}=0\)

a, \(A=\dfrac{101+100+99+98+...+3+2+1}{101-100+99-98+...+3-2+1}\) 

Ta có: \(T=101+100+99+98+...+3+2+1\) \(=\dfrac{\left(101+1\right).101}{2}\) 

                                                                             \(=\dfrac{102.101}{2}\Leftrightarrow51.101\) 

  \(M=101-100+99-98+...+3-2+1\) 

Ta có: \(101:2=50\) (dư \(1\)

\(\Rightarrow M=\left(101-100\right)+\left(99-98\right)+...+\left(3-2\right)+1\) 

 Có \(50\) dấu ngoặc tròn "\(\left(\right)\)"

 \(\Rightarrow M=1+1+...+1+1=51.1=51\) 

      \(M\) có  \(51\) số \(1\)  

 \(\Rightarrow A=\dfrac{T}{M}=\dfrac{51.101}{51}=101\)

 Vậy \(A=101\)

b, \(B=\dfrac{3737.43-4343.37}{2+4+6+...100}\) 

Ta có: \(T=3737.43-4343.37\) 

          \(T=37.101.43-43.101.37\) 

          \(T=0\) 

\(\Rightarrow\) \(B=\dfrac{T}{2+4+6+...+100}=\dfrac{0}{2+4+6+...+100}\) \(=0\) 

 Vậy \(B=0\)