K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 5 2020

:D

10 tháng 5 2020

a, \(\frac{3}{5}+\frac{-4}{15}=\frac{9}{15}-\frac{4}{15}=\frac{5}{15}=\frac{1}{3}\)

b, \(\frac{-1}{3}+\frac{2}{5}+\frac{2}{15}=\frac{-5}{15}+\frac{6}{15}+\frac{2}{15}=\frac{3}{15}=\frac{1}{5}\)

c, \(\frac{-3}{5}+\frac{7}{21}+\frac{-4}{5}+\frac{7}{5}=\frac{-3}{5}+\frac{1}{3}+\frac{-4}{5}+\frac{7}{5}=\left(\frac{-3}{5}+\frac{-4}{5}+\frac{7}{5}\right)+\frac{1}{3}=\frac{1}{3}\)

d, \(\frac{2}{7}+\frac{1}{9}+\frac{3}{7}+\frac{5}{9}+\frac{-5}{6}=\left(\frac{2}{7}+\frac{3}{7}\right)+\left(\frac{1}{9}+\frac{5}{9}\right)+\frac{-5}{6}=\frac{5}{7}+\frac{6}{9}+\frac{-5}{6}=\frac{90}{126}+\frac{84}{126}+\frac{-105}{126}=\frac{69}{126}=\frac{23}{42}\)

e, \(\frac{-5}{7}+\frac{3}{4}+\frac{-1}{5}+\frac{-2}{7}+\frac{1}{4}=\left(\frac{-5}{7}+\frac{-2}{7}\right)+\left(\frac{3}{4}+\frac{1}{4}\right)+\frac{-1}{5}=\left(-1\right)+1+\frac{-1}{5}=\frac{-1}{5}\)

f, \(\frac{-3}{31}+\frac{-6}{17}+\frac{1}{25}+\frac{-28}{31}+\frac{-1}{17}+\frac{-1}{5}=\left(\frac{-3}{31}+\frac{-28}{31}\right)+\left(\frac{-6}{17}+\frac{-1}{17}\right)+\left(\frac{1}{25}+\frac{-1}{5}\right)=\left(-1\right)+\frac{-7}{17}+\frac{-4}{25}=\frac{-425}{425}+\frac{-175}{425}+\frac{-68}{425}=\frac{-668}{425}\)

Chúc bn học tốt

11 tháng 6 2019

\(a,\frac{3}{17}+\frac{-5}{13}+\frac{-18}{35}+\frac{14}{17}+\frac{17}{-35}\)

=\(-\frac{5}{13}+\left(\frac{3}{17}+\frac{14}{17}\right)+\left(\frac{-18}{35}+\frac{-17}{35}\right)\)

= \(-\frac{5}{13}+1+\left(-1\right)\)

=\(-\frac{5}{13}\)

\(b,\frac{-3}{8}.\frac{1}{6}+\frac{3}{-8}.\frac{5}{6}+\frac{-10}{6}\)

=\(\frac{-3}{8}.\left(\frac{1}{6}+\frac{5}{6}\right)+\frac{-10}{6}\)

=\(\frac{-3}{8}.1+\frac{-10}{6}\)

=\(-\frac{49}{24}\)

\(c,\frac{-4}{11}.\frac{5}{15}.\frac{11}{-4}\)

=\(\left(\frac{-4}{11}.\frac{11}{-4}\right).\frac{1}{3}\)

=\(1.\frac{1}{3}=\frac{1}{3}\)

\(d,\frac{13}{8}+\frac{1}{8}:\left(0,75-\frac{1}{2}\right)-25\%.\frac{1}{2}\)

=\(\frac{13}{8}+\frac{1}{8}:\left(\frac{3}{4}-\frac{1}{2}\right)-\frac{1}{4}.\frac{1}{2}\)

=\(\frac{13}{8}+\frac{1}{8}:\frac{1}{4}-\frac{1}{8}\)

=\(\frac{13}{8}+\frac{1}{2}+\frac{-1}{8}\)

=\(\left(\frac{13}{8}+\frac{-1}{8}\right)+\frac{1}{2}\)

=\(\frac{3}{2}+\frac{1}{2}=2\)

\(e,\frac{-1}{2^2}-\left(-2\right)^2-5\)

=\(\frac{-1}{4}-4-5\)

=\(-\frac{37}{4}\)

\(f,\frac{121}{3}-\frac{5}{7}:\left(24-\frac{23}{57}\right)\)

=\(\frac{121}{3}-\frac{5}{7}:\frac{1345}{57}\)

=\(\frac{121}{3}-\frac{57}{1883}\)

\(\approx40,4\)

12 tháng 6 2019

cám ơn

23 tháng 10 2021

12 phần 25 trừ cho 14 phần 5 bằng bao nhiêu

29 tháng 10 2021
2 phân 7 -1×1phan5
12 tháng 4 2020

a/ \(2x+\frac{1}{7}=\frac{1}{3}\)

=> \(2x=\frac{1}{3}-\frac{1}{7}=\frac{7}{21}-\frac{3}{21}\)

=> \(2x=\frac{4}{21}\)

=> \(x=\frac{4}{21}:2=\frac{4}{21}.\frac{1}{2}=\frac{2}{21}\)

b/ \(3\left(x-\frac{1}{2}\right)=\frac{4}{9}\)

=> \(x-\frac{1}{2}=\frac{4}{9}:3=\frac{4}{9}.\frac{1}{3}\)

=> \(x-\frac{1}{2}=\frac{4}{27}\)

=> \(x=\frac{4}{27}+\frac{1}{2}=\frac{8}{54}+\frac{27}{54}=\frac{35}{54}\)

c/ \(\left(x-5\right)^2+4=68\)

=> \(\left(x-5\right)^2=68-4=64\)

=> \(\left[{}\begin{matrix}x-5=8\\x-5=-8\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}x=8+5=13\\x=-8+5=-3\end{matrix}\right.\)

d/ \(\left(\left|x\right|-\frac{1}{2}\right)\left(2x+\frac{3}{2}\right)=0\)

=> \(\left[{}\begin{matrix}\left|x\right|-\frac{1}{2}=0\\2x+\frac{3}{2}=0\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}\left|x\right|=0+\frac{1}{2}=\frac{1}{2}\\2x=0-\frac{3}{2}=-\frac{3}{2}\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}\left[{}\begin{matrix}x=\frac{1}{2}\\x=-\frac{1}{2}\end{matrix}\right.\\x=-\frac{3}{2}:2=-\frac{3}{2}.\frac{1}{2}=-\frac{3}{4}\end{matrix}\right.\)

e) \(5x+2=3x+8\)

=> \(5x-3x=8-2=6\)

=> \(2x=6\)

=> \(x=6:2=3\)

f/ \(26-\left(5-2x\right)=27\)

=> \(5-2x=26-27=-1\)

=> \(2x=5-\left(-1\right)=5+1=6\)

=> \(x=6:2=3\)

g/ \(\left(4x-8\right)-\left(2x-6\right)=4\)

=> \(4x-8-2x+6=4\)

=> \(\left(4x-2x\right)+\left(-8+6\right)=4\)

=> \(2x+-2=4\)

=> \(2x=4+2=6\)

=> \(x=6:2=3\)

h/ \(\left(x+3\right)^3:3-1=-10\)

=> \(\left(x+3\right)^3:3=-10+1=-9\)

=> \(\left(x+3\right)^3=-9.3=-27\)

=> \(x+3=-3\)

=> \(x=-3-3=-6\)

12 tháng 4 2020

Thank

7 tháng 6 2019

1)

A = \(\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+...+\frac{1}{132}\)

   = \(\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+...+\frac{1}{11.12}\)

   = \(\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+...+\frac{1}{11}-\frac{1}{12}\)

   = \(\frac{1}{5}-\frac{1}{12}\)

   = \(\frac{7}{60}\)

B = \(\left(1+\frac{1}{2}\right).\left(1+\frac{1}{3}\right).\left(1+\frac{1}{4}\right).....\left(1+\frac{1}{99}\right)\)

   = \(\frac{3}{2}.\frac{4}{3}.\frac{5}{4}.....\frac{100}{99}\)

   = \(\frac{3.4.5.....100}{2.3.4....99}\)

   = \(\frac{100}{2}=50\)

C = \(\frac{1}{4^{2-1}}+\frac{1}{6^{2-1}}+\frac{1}{8^{2-1}}...+\frac{1}{30^{2-1}}\)

   = \(\frac{1}{4}+\frac{1}{6}+\frac{1}{8}+...+\frac{1}{30}\)

   = \(\frac{1}{2.2}+\frac{1}{2.3}+\frac{1}{2.4}+...+\frac{1}{2.15}\)

   = \(\frac{1}{2}.\frac{1}{2}+\frac{1}{2}.\frac{1}{3}+\frac{1}{2}.\frac{1}{4}+...+\frac{1}{2}.\frac{1}{15}\)

   = \(\frac{1}{2}.\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{15}\right)\)

   

7 tháng 6 2019

\(A=\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}+\frac{1}{110}+\frac{1}{132}\)

\(A=\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+\frac{1}{9.10}+\frac{1}{10.11}+\frac{1}{11.12}\)

\(A=\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}+\frac{1}{10}-\frac{1}{11}+\frac{1}{11}-\frac{1}{12}\)

\(A=\frac{1}{5}+\left(\frac{1}{6}-\frac{1}{6}\right)+\left(\frac{1}{7}-\frac{1}{7}\right)+\left(\frac{1}{8}-\frac{1}{8}\right)+\left(\frac{1}{9}-\frac{1}{9}\right)+\left(\frac{1}{10}-\frac{1}{10}\right)+\left(\frac{1}{11}-\frac{1}{11}\right)-\frac{1}{12}\)

\(A=\frac{1}{5}-\frac{1}{12}=\frac{7}{60}\)

~ Hok tốt ~

28 tháng 4 2018

a/  Tinh giá trị:

\(D=\left(1-\frac{1}{2}\right).\left(1-\frac{1}{3}\right).\left(1-\frac{1}{4}\right)...\left(1-\frac{1}{10}\right)\) \(\Leftrightarrow D=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}...\frac{7}{8}.\frac{8}{9}.\frac{9}{10}=\frac{1}{10}\) 

b/  Chứng minh:

\(E=\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+...+\frac{1}{100^2}< \frac{1}{2}\) 

-  Với mọi số tự nhiên n khác không thì luôn có:   \(\frac{1}{n^2}< \frac{1}{\left(n-1\right)\left(n+1\right)}=\frac{1}{2}\left(\frac{1}{n-1}-\frac{1}{n+1}\right)\) Do đó:

 \(E=\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+...+\frac{1}{100^2}< \frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{99.101}=\) 

   \(=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-...+\frac{1}{99}-\frac{1}{101}\right)\)\(=\frac{1}{2}\left(1-\frac{1}{101}\right)< \frac{1}{2}\) Vậy \(E< \frac{1}{2}\) 

c/  Chứng minh : \(F=\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{199}+\frac{1}{200}>\frac{7}{12}\) 

    \(F=\left(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{150}\right)+\left(\frac{1}{151}+\frac{1}{152}+...+\frac{1}{200}\right)>\frac{50}{150}+\frac{50}{200}=\frac{1}{3}+\frac{1}{4}=\frac{7}{12}\)

   Vậy:            \(F>\frac{7}{12}\) .

18 tháng 2 2021

Abcfsgsgsgsgsggggggghyhjgfhnhgjfgefhefrgjhfgjhergfyebfqybrfjyebrfyerbfjqyrfgjyerqfyearfyaberjybqrfjhwqdicuvdaciuvicvdcu

18 tháng 2 2021

B=0,5274220522

6 tháng 8 2020

\(\frac{5}{6}=\frac{x-1}{x}\left(đk:x\ne0\right)\)

\(< =>5x=6\left(x-1\right)< =>5x=6x-6\)

\(< =>6x-5x=6< =>x=6\left(tmđk\right)\)

\(\frac{1}{2}=\frac{x+1}{3x}\left(đk:x\ne0\right)\)

\(< =>3x=2\left(x+1\right)< =>3x=2x+2\)

\(< =>3x-2x=2< =>x=2\left(tmđk\right)\)

\(\frac{3}{x+2}=\frac{5}{2x+1}\left(đk:x\ne-2;-\frac{1}{2}\right)\)

\(< =>3\left(2x+1\right)=5\left(x+2\right)< =>6x+3=5x+10\)

\(< =>6x-5x=10-3< =>x=7\left(tmđk\right)\)

\(\frac{5}{8x-2}=-\frac{4}{7-x}\left(đk:x\ne\frac{1}{4};7\right)\)

\(< =>\frac{5}{8x-2}=\frac{4}{x-7}< =>5\left(x-7\right)=4\left(8x-2\right)\)

\(< =>5x-35=32x-8< =>32x-5x=-35+8\)

\(< =>27x=-27< =>x=-1\)

6 tháng 8 2020

\(\frac{4}{3}=\frac{2x-1}{3}< =>4.3=\left(2x-1\right).3\)

\(< =>12=6x-3< =>6x=12+3\)

\(< =>6x=15< =>x=\frac{15}{6}=\frac{5}{2}\)

\(\frac{2x-1}{3}=\frac{3x+1}{4}< =>4\left(2x-1\right)=3\left(3x+1\right)\)

\(< =>8x-4=9x+3< =>9x-8x=-4-3\)

\(< =>9x-8x=-7< =>x=-7\)

\(\frac{4}{x+2}=\frac{7}{3x+1}\left(đk:x\ne-2;-\frac{1}{3}\right)\)

\(< =>4\left(3x+1\right)=7\left(x+2\right)< =>12x+4=7x+14\)

\(< =>12x-7x=14-4< =>5x=10\)

\(< =>x=\frac{10}{5}=2\left(tmđk\right)\)

\(-\frac{3}{x+1}=\frac{4}{2-2x}\left(đk:x\ne-1;1\right)\)

\(< =>-3\left(2-2x\right)=4\left(x+1\right)< =>-6+6x=4x+4\)

\(< =>6x-4x=4+6< =>2x=10\)

\(< =>x=\frac{10}{2}=5\left(tmđk\right)\)

\(\frac{x+1}{3}=\frac{3}{x+1}\left(đk:x\ne-1\right)\)

\(< =>\left(x+1\right)\left(x+1\right)=3.3\)

\(< =>x^2+2x+1=9< =>x^2+2x+1-9=0\)

\(< =>x^2+2x-8=0< =>x^2-2x+4x-8=0\)

\(< =>x\left(x-2\right)+4\left(x-2\right)=0< =>\left(x+4\right)\left(x-2\right)=0\)

\(< =>\orbr{\begin{cases}x+4=0\\x-2=0\end{cases}< =>\orbr{\begin{cases}x=-4\\x=2\end{cases}}}\left(tmđk\right)\)