Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
# Bài 1
* Ta cm BĐT sau \(a^2+b^2\ge\dfrac{\left(a+b\right)^2}{2}\) (1) bằng cách biến đổi tương đương
* Với \(x,y>0\) áp dụng (1) ta có
\(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{\left(\sqrt{x}\right)^2}+\dfrac{1}{\left(\sqrt{y}\right)^2}\ge\dfrac{1}{2}\left(\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{y}}\right)^2\)
Mà \(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{2}\)
\(\Rightarrow\) \(\left(\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{y}}\right)^2\le1\) \(\Leftrightarrow\) \(0< \dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{y}}\le1\) (I)
* Ta cm BĐT phụ \(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\) với \(a,b>0\) (2)
Áp dụng (2) với x , y > 0 ta có
\(\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{y}}\ge\dfrac{4}{\sqrt{x}+\sqrt{y}}\) (II)
* Từ (I) và (II) \(\Rightarrow\) \(\dfrac{4}{\sqrt{x}+\sqrt{y}}\le1\)
\(\Leftrightarrow\) \(\sqrt{x}+\sqrt{y}\ge4\)
Dấu "=" xra khi \(x=y=4\)
Vậy min \(\sqrt{x}+\sqrt{y}=4\) khi \(x=y=4\)
Ta có: \(\frac{1}{x^2+y^2}+\frac{1}{xy}+4xy\)
\(=\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)+\left(4xy+\frac{1}{4xy}\right)+\frac{1}{4xy}\)
\(\ge\frac{4}{\left(x+y\right)^2}+2\sqrt{4xy.\frac{1}{4xy}}+\frac{1}{\left(x+y\right)^2}\)\(\ge4+2+1=7\)
Dấu = xảy ra khi \(x=y=\frac{1}{2}\)
Vậy \(\left(\frac{1}{x^2+y^2}+\frac{1}{xy}+4xy\right)_{Min}=7\Leftrightarrow x=y=\frac{1}{2}\)
à nhầm, bạn pham trung thanh làm đúng rồi đấy mọi người ủng hộ bạn ấy nha
Q=\(\left(1+\dfrac{a}{x}\right)\left(1+\dfrac{a}{y}\right)\left(1+\dfrac{a}{z}\right)\)
\(Q=\left(\dfrac{x+a}{x}\right)\left(\dfrac{y+a}{y}\right)\left(\dfrac{z+a}{z}\right)\)\
=\(\left(\dfrac{2x+y+z}{x}\right)\left(\dfrac{2y+x+z}{y}\right)\left(\dfrac{2z+x+y}{z}\right)\)
=\(\dfrac{\left(2x+y+z\right)\left(2y+x+z\right)\left(2z+x+y\right)}{xyz}\)
ÁP dụng BĐT cô si
\(2x+y+z=x+x+y+z\ge4\sqrt[4]{x^2yz}\)
\(2y+x+z=y+y+x+z\ge4\sqrt[4]{y^2xy}\)
\(2z+y+x=z+z+x+y\ge4\sqrt[4]{z^2xy}\)
=> Q\(\ge\dfrac{64.\sqrt[4]{x^4y^4z^4}}{xyz}=64\)
=> MinQ=64 khi x=y=z=a/3
mk hc nghu lém mk giải ko dc nhưng cho mk xin nha mấy bn yêu mấy bn nh`
Ta có BĐT \(x^2+1\ge2x\Leftrightarrow\left(x-1\right)^2\ge0\)
Tương tự cũng có 2 BĐT tương tự:
\(y^2+1\ge2y;z^2+1\ge2z\)
\(\Rightarrow x^2+y^2+z^2+3\ge2\left(x+y+z\right)\left(1\right)\)
Và BĐT \(x^2+y^2+z^2\ge xy+yz+xz\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(y-z\right)^2\ge0\)
\(\Rightarrow2\left(x^2+y^2+z^2\right)\ge2\left(xy+yz+xz\right)\left(2\right)\)
Cộng theo vế 2 BĐT (1) và (2) có:
\(3\left(x^2+y^2+z^2\right)+3\ge2\left(x+y+z+xy+yz+xz\right)\)
\(\Leftrightarrow3\left(x^2+y^2+z^2\right)+3\ge2\cdot6=12\)
\(\Leftrightarrow3\left(x^2+y^2+z^2\right)\ge9\Leftrightarrow x^2+y^2+z^2\ge3\)
Xảy ra khi \(x=y=z=1\)
Lớp 9 gì mà hs lớp 7 làm đc :)) ahaha
Áp dụng bất đẳng thức Cauchy ta có :
\(x^2+1\ge2x\)
\(y^2+1\ge2y\)
\(z^2+1\ge2z\)
\(x^2+y^2\ge2xy\)
\(y^2+z^2\ge2yz\)
\(x^2+z^2\ge2zx\)
Cộng vế với vế ta được :
\(3x^2+3y^2+3z^2+3\ge x+y+z+xy+xz+yz\)
\(\Leftrightarrow3\left(x^2+y^2+z^2\right)+3\ge6\)
\(\Rightarrow x^2+y^2+z^2\ge\frac{6-3}{3}=1\)
Dấu "=" xảy ra \(\Leftrightarrow x=y=z=1\)
Vậy \(x^2+y^2+z^2\) có GTNN là 1 tại \(x=y=z=1\)
cănx thôi hay căn (x(2+y))
x=1/4
y=1/2