K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 8 2017

a) Giả sử ∆ABC vuông góc tại A. Vẽ hai đường trung trực của hai cạnh góc vuông AB, AC cắt nhau tại M. Ta chứng minh M là trung điểm của BC.

Vì M là giao điểm hai đường trung trực d1, d2

của AB, AC mà AB ⊥ AC nên B, M, C thẳng hàng (bài tập 55)

Vì MA = MB (M thuộc đường trung trực của AB)

MA = MC (M thuộc đường trung trực của AC)

=> MB = MC

Do B, M, C thẳng hàng và M cách đều BC nên M là trung điểm của BC

b) M là trung điểm Bc => MB =  BC

mà AM = MB nên MA = BC

Vậy độ dài đường trung tuyến xuất phát từ đỉnh góc vuông bằng một nửa độ dài cạnh huyền.

19 tháng 4 2017

a) Giả sử ∆ABC vuông góc tại A. Vẽ hai đường trung trực của hai cạnh góc vuông AB, AC cắt nhau tại M. Ta chứng minh M là trung điểm của BC.

Vì M là giao điểm hai đường trung trực d1, d2

của AB, AC mà AB ⊥ AC nên B, M, C thẳng hàng (bài tập 55)

Vì MA = MB (M thuộc đường trung trực của AB)

MA = MC (M thuộc đường trung trực của AC)

=> MB = MC

Do B, M, C thẳng hàng và M cách đều BC nên M là trung điểm của BC

b) M là trung điểm Bc => MB = 1212 BC

mà AM = MB nên MA =1212 BC

Vậy độ dài đường trung tuyến xuất phát từ đỉnh góc vuông bằng một nửa độ dài cạnh huyền.

19 tháng 4 2017

a) Giả sử ∆ABC vuông góc tại A. Vẽ hai đường trung trực của hai cạnh góc vuông AB, AC cắt nhau tại M. Ta chứng minh M là trung điểm của BC.

Vì M là giao điểm hai đường trung trực d1, d2

của AB, AC mà AB ⊥ AC nên B, M, C thẳng hàng (bài tập 55)

Vì MA = MB (M thuộc đường trung trực của AB)

MA = MC (M thuộc đường trung trực của AC)

=> MB = MC

Do B, M, C thẳng hàng và M cách đều BC nên M là trung điểm của BC

b) M là trung điểm Bc => MB = 1212 BC

mà AM = MB nên MA =1212 BC

Vậy độ dài đường trung tuyến xuất phát từ đỉnh góc vuông bằng một nửa độ dài cạnh huyền



24 tháng 5 2017

Giải bài 56 trang 80 SGK Toán 7 Tập 2 | Giải toán lớp 7

+ Giả sử ∆ABC vuông tại A.

d1 là đường trung trực cạnh AB, d2 là đường trung trực cạnh AC.

d1 cắt d2 tại M. Khi đó M là điểm cách đều ba đỉnh của tam giác ABC.

+ Áp dụng kết quả bài 55 ta có B, M, C thẳng hàng.

QUẢNG CÁO

+ M cách đều A, B, C ⇒ MB = MC ⇒ M là trung điểm của cạnh BC (đpcm)

+ M là trung điểm của cạnh BC (đpcm)

*) Giả sử AM là trung tuyến của tam giác ABC suy ra M là trung điểm của cạnh BC

⇒ MB = MC = BC/2

Mà MA = MB = MC (cmt)

⇒ MA = BC/2

Vậy độ dài đường trung tuyến xuất phát từ đỉnh góc vuông bằng một nửa độ dài cạnh huyền.

29 tháng 3 2016

bài 66 trang 49 sách bài tập toán lớp 7

19 tháng 4 2017

∆ABC vuông tại A => BC2 = AB2 + AC2

BC2 = 32 + 42

BC2 = 25

BC = 5

Gọi M là trung điểm của BC => AM là trung tuyến ứng với cạnh huyền bằng một nửa cạnh huyền nên AM = 1212 BC

Vì G là trọng tâm của ∆ ABC nên AG =2323 AM => AG =2323.1212 BC

=> AG = 1313 BC = 1313 .5 = 1.7cm

25 tháng 3 2015

Gọi D là trung điểm BC; E là trung điểm AC

Trong tam giác ABC có BC2 = AB2 + AC2 = 32 + 42 = 25

=> BC = 5

Trong tam giác vuông ABC có AD là đường trung tuyến ứng với cạnh huyền BC nên AD = BD = CD

mà BD = CD = BC/2 = 5/2 = 2,5 nên AD = 2,5

Ta có AG/AD = 2/3 => AG = (AD.2)/3 = (2,5 x 2)/3 = 5/3

27 tháng 1 2016

A B C M A'

a.Lấy tam giác vuong ABC bất kì, gọi AM là đường trung tuyến ứng với cạnh huyền BC

=>MB=MC=1/2BC

Trên tia đối tia MA lấy A' sao cho MA=MA'=1/2AA'

tam giác BMA và tam giác CMA': BM=MC(gt)

                                                 góc BMA= góc CMA'(đối đỉnh)

                                                 MA=MA'

=> tam giác BMA= tam giác CMA'(c.g.c)

=> BA=CA' và góc ABM = góc MCA'(2)

Từ (2) => BA//CA'

Vì BA//CA' (cmt) và BA vuông góc AC => A'C cuông góc AC

tam giác BAC và tam giác A'CA: AC chung

                                                góc BAC = góc A'CA (= 90)

                                                BA = A'C(cmt)

=> tam giác BAC = tam giác A'CA(c.g.c)

=>BC = A'A

=> 1/2BC = 1/2 A'A = AM (đpcm)

b. Tam giác ABC có vuông ko ?

17 tháng 5 2018

Giải bài 25 trang 67 SGK Toán 7 Tập 2 | Giải toán lớp 7

ΔABC vuông tại A có BC2 = AB2 + AC2 (định lí Pitago)

⇒ BC2 = 32 + 42 = 25 ⇒ BC = 5 (cm)

Gọi M là trung điểm của BC ⇒ AM là trung tuyến.

Vì theo đề bài: trong một tam giác vuông, đường trung tuyến ứng với cạnh huyền bằng một nửa cạnh huyền nên

Giải bài 25 trang 67 SGK Toán 7 Tập 2 | Giải toán lớp 7