Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)86.52 - 13.52 + (35 : 32).25
= 86.52 - 13.52 + 33.52
= 52(86 - 13 + 27)
= 25.100 = 2500
b)28.76 + 44.28 - 28.20
= 28(76 + 44 - 20)
= 28.100 = 2800
c)-|-33| + (-12) + 18 + |45 - 40| - 57
= -33 - 12 +18 + 5 - 57
= -79
d)-500 - {5[409 - (23 . 3 - 21)2 ] + 10} : (-15)
= -500 - {5[409 - 9] + 10} : (-15)
= -500 - {2000 + 10} : (-15)
= -500 - (-134) = -366
3x+2=369
=>x+2=69
x=69-2
x=67
2x-5=810
2x-5=230
=>x-5=30
x=30+5
x=35
3x+2+3x=810
3x.32+3x=810
3x.(32+1)=810
3x.10=810
3x=810:10
3x=81
3x=34
=>x=4
5x+1-5x=500
5x.5-5x=500
5x.(5-1)=500
5x.4=500
5x=500:4
5x=125
5x=53
=>x=3
a) 3x+2 = 369
x + 2 = 69
x = 69 - 2
x = 67
b) 2x-5 = 810
2x-5 = 230
x - 5 = 30
x = 30 + 5
x = 35
c) 3x+2 + 3x = 810
3x . 9 + 3x . 1 = 810
3x . ( 9 + 1 ) = 810
3x . 10 = 810
3x = 810 : 10
3x = 81
3x = 34
=> x = 4
d) 5x+1 - 5x = 500
5x . 5 - 5x . 1 = 500
5x . ( 5 - 1 ) = 500
5x . 4 = 500
5x = 500 : 4
5x = 125
5x = 53
=> x = 3
a) \(7.2^{13}< 8.2^{13}=2^3.2^{13}=2^{16}\)
b) \(3^{2n}=\left(3^2\right)^n=9^n>8^n=\left(2^3\right)^n=2^{3n}\)
c) \(21^{15}=\left(3.7\right)^{15}=3^{15}.7^{15}\) (1)
\(27^5.49^8=\left(3^3\right)^5.\left(7^2\right)^8=3^{15}.7^{16}\) (2)
(1) và (2) suy ra \(21^{15}< 27^3.49^8\)
d) \(3^{500}=3^{5.100}=\left(3^5\right)^{100}=234^{100}\) (3)
\(7^{300}=\left(7^3\right)^{100}=343^{100}\) (4)
Từ (3) và (4) suy ra \(3^{500}< 7^{300}\)
e) \(3^{21}=3.3^{20}=3.\left(3^2\right)^{10}=3.9^{100}\) (5)
\(2^{31}=2.2^{30}=2.\left(2^3\right)^{10}=2.8^{100}< 3.9^{100}\) (6)
Từ (5) và (6) suy ra \(3^{21}>2^{31}\)
g) \(202^{303}=\left(2.101\right)^{3.101}=\left(2^3\right)^{101}.101^{3.101}=8^{101}.101^{3.101}=8^{101}.101^{101}.101^{2.101}=808^{101}.101^{2.101}\)
\(303^{202}=\left(3.101\right)^{2.101}=\left(3^2\right)^{101}.101^{2.101}=9^{101}.101^{2.101}\)
Suy ra \(202^{303}>303^{202}\)
Bài 1: Tính ( hợp lý nếu có thể )
\(A=\dfrac{-3}{8}+\dfrac{12}{25}+\dfrac{5}{-8}+\dfrac{2}{-5}+\dfrac{13}{25}\)
\(=\left(\dfrac{-3}{8}+\dfrac{5}{-8}\right)+\left(\dfrac{12}{25}+\dfrac{13}{25}\right)+\dfrac{2}{-5}\)
\(=-1+1+\dfrac{2}{-5}\)
\(=0+\dfrac{2}{-5}\)
\(=\dfrac{2}{-5}\)
\(B=\dfrac{-3}{15}+\left(\dfrac{2}{3}+\dfrac{3}{15}\right)\)
\(=\left(\dfrac{-3}{15}+\dfrac{3}{15}\right)+\dfrac{2}{3}\)
\(=0+\dfrac{2}{3}\)
\(=\dfrac{2}{3}\)
\(C=\dfrac{-5}{21}+\left(\dfrac{-16}{21}+1\right)\)
\(=\left(\dfrac{-5}{21}+\dfrac{-16}{21}\right)+1\)
\(=-1+1\)
\(=0\)
\(D=\left(\dfrac{-1}{6}+\dfrac{5}{-12}\right)+\dfrac{7}{12}\)
\(=\left(\dfrac{5}{-12}+\dfrac{7}{12}\right)+\dfrac{-1}{6}\)
\(=\dfrac{1}{6}+\dfrac{-1}{6}\)
\(=0\)
Bài 2: Tìm x,biết:
a) \(x+\dfrac{2}{3}=\dfrac{4}{5}\)
\(x=\dfrac{4}{5}-\dfrac{2}{3}\)
\(x=\dfrac{2}{15}\)
Vậy \(x=\dfrac{2}{15}\)
b) \(x-\dfrac{2}{3}=\dfrac{7}{21}\)
\(\Rightarrow x-\dfrac{2}{3}=\dfrac{1}{3}\)
\(x=\dfrac{1}{3}+\dfrac{2}{3}\)
\(x=\dfrac{3}{3}=1\)
Vậy \(x=1\)
c) sai đề hay sao ấy bạn.bỏ dấu - ở x thì đúng đề.mk giải luôn nha!
\(x-\dfrac{3}{4}=\dfrac{-8}{11}\)
\(x=\dfrac{-8}{11}+\dfrac{3}{4}\)
\(x=\dfrac{1}{44}\)
Vậy \(x=\dfrac{1}{44}\)
d) \(\dfrac{11}{12}-\left(\dfrac{2}{5}+x\right)=\dfrac{2}{3}\)
\(\dfrac{2}{5}+x=\dfrac{11}{12}-\dfrac{2}{3}\)
\(\dfrac{2}{5}+x=\dfrac{1}{4}\)
\(x=\dfrac{1}{4}-\dfrac{2}{5}\)
\(x=-\dfrac{3}{20}\)
Vậy \(x=-\dfrac{3}{20}\)
\(1\frac{4}{33}+\left(\frac{5}{21}-\frac{3}{4}\right)+\frac{16}{21}-\frac{1}{2}\)
\(=1\frac{4}{33}+\left(\frac{5}{21}+\frac{16}{21}\right)-\frac{3}{4}-\frac{1}{2}\)
\(=\frac{1.4+33}{33}+\frac{5+16}{21}-\left(\frac{1}{2}+\frac{3}{4}\right)\)
\(=\frac{37}{33}+\frac{21}{21}-\left(\frac{2}{4}+\frac{3}{4}\right)\)
\(=\frac{37}{33}+1-\frac{2+3}{4}\)\(=\frac{37}{33}+1-\frac{5}{4}\)\(=\frac{37}{33}+\frac{33}{33}-\frac{5}{4}\)
\(=\frac{37+33}{33}-\frac{5}{4}\)\(=\frac{70}{33}-\frac{5}{4}=\frac{70.4}{33.4}-\frac{5.33}{4.33}=\frac{70.4-5.33}{4.33}\)
\(=\frac{280-165}{132}=\frac{115}{132}\)
Bạn ơi ; tách từng bài ra cho dễ làm :
1.7C-C= 7^2016-7
C = ( 7^2016-7 ) :6
\(C=7+7^2+7^3+.....+7^{2016}\)
\(\Rightarrow7C=7^2+7^3+7^4+...+7^{2017}\)
\(\Rightarrow7C-C=\left(7^2+7^3+.....+7^{2017}\right)-\left(7+7^2+7^3+....+7^{2016}\right)\)
\(\Rightarrow6C=2^{2017}-7\)
\(\Rightarrow C=\frac{2^{2017}-7}{6}\)
a, \(\left(2\dfrac{3}{5}-3\dfrac{5}{9}\right):\left(3\dfrac{10}{21}-1\dfrac{3}{7}\right)\)
\(=\dfrac{-43}{45}:\dfrac{43}{21}=\dfrac{-43}{45}.\dfrac{21}{43}=\dfrac{-7}{15}\)
b, \(5\dfrac{1}{2}-14\dfrac{3}{7}:\dfrac{9}{13}-3\dfrac{4}{7}:\dfrac{9}{13}\)
\(=5\dfrac{1}{2}-14\dfrac{3}{7}.\dfrac{13}{9}-3\dfrac{4}{7}.\dfrac{13}{9}\)
\(=5\dfrac{1}{2}-\dfrac{13}{9}.\left(14\dfrac{3}{7}+\dfrac{4}{7}\right)\)
\(=5\dfrac{1}{2}-\dfrac{13}{9}.15=5\dfrac{1}{2}-\dfrac{65}{3}\)
\(=\dfrac{-97}{6}\)
Chúc bạn học tốt!!!
\(500-\left\{5\cdot\left[409-\left(2^3\cdot3-21\right)^2\right]-1724\right\}\\ =500-\left\{5\cdot\left[409-\left(8\cdot3-21\right)^2\right]-1724\right\}\\ =500-\left\{5\cdot\left[409-\left(24-21\right)^2\right]-1724\right\}\\ =500-\left[5\cdot\left(409-3^2\right)-1724\right]\\ =500-\left[5\cdot\left(409-9\right)-1724\right]\\ =500-\left(5\cdot400-1724\right)\\ =500-\left(2000-1724\right)\\ =500-276\\ =224\)
\(500-\left\{5\left[409-\left(2^3\times3-21\right)^2\right]-1724\right\}\)
\(=500-\left\{5\left[409-\left(24-21\right)^2\right]-1724\right\}\)
\(=500-\left\{5\left[409-9\right]-1724\right\}\)
\(=500-\left\{5.400-1724\right\}\)
\(=500-\left\{2000-1724\right\}\)
\(=500-2000+1724\)
\(=224\)