Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x-2\right)^{x+2}=\left(x-2\right)^{x+4}\)
\(\left(x-2\right)^{x+2}-\left(x-2\right)^{x+2}.\left(x-2\right)^2=0\)
\(\left(x-2\right)^{x+2}.\left[1-\left(x-2\right)^2\right]=0\)
\(\Rightarrow\hept{\begin{cases}\left(x-2\right)^{x+2}=0\\1-\left(x-2\right)^2=0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x-2=0\\\left(x-2\right)^2=1\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=2\\x-2=1\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=2\\x=3\end{cases}}\)
\(B=\frac{4^2.25^2+32.125}{2^3.5^2}\)
\(=\frac{\left(2^2\right)^2.\left(5^2\right)^2+2^5.5^3}{2^3.5^2}\)
\(=\frac{2^4.5^4+2^5.5^3}{2^3.5^2}\)
\(=\frac{2^3.5^2.\left(2.5^2+2^2.5\right)}{2^3.5^2}\)
\(=2.5^2+2^2.5\)
\(=2.25+4.5\)
\(=50+20\)
\(=70\)
Bài làm
\(B=\frac{4^2\cdot25^2+32\cdot125}{2^3\cdot5^2}\)
\(B=\frac{\left(2^2\right)^2\cdot\left(5^2\right)^2+2^5\cdot5^3}{2^3\cdot5^2}\)
\(B=\frac{2^4\cdot5^2+2^5\cdot5^3}{2^3\cdot5^2}\)
\(B=\frac{2^4\left(5^2+2\cdot5^3\right)}{2^3.5^2}\)
\(B=\frac{2^4\left[5^2\left(1+2\cdot5\right)\right]}{2^3.5^2}\)
\(B=\frac{2^4\cdot5^2\cdot11}{2^3\cdot5^2}\)
\(B=2.11=22\)
Vậy B = 22
\(\left(x+1\right)^2=\left(x+1\right)^4\)
\(\Rightarrow\left(x+1\right)^4-\left(x+1\right)^2=0\)
\(\Rightarrow\left(x+1\right)^2\left[\left(x+1\right)^2-1\right]=0\)
\(\Rightarrow\orbr{\begin{cases}\left(x+1\right)^2=0\\\left(x+1\right)^2-1=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x+1=0\\\left(x+1\right)^2=1\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=-1\\x+1=\pm1\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=-1\\x=0\text{ or }x=-2\end{cases}}\)
b)
Ta có :
\(\frac{x}{x+y+z}>\frac{x}{x+y+z+t}\)
\(\frac{y}{x+y+t}>\frac{y}{x+y+z+t}\)
\(\frac{z}{y+z+t}>\frac{z}{x+y+z+t}\)
\(\frac{t}{x+z+t}>\frac{t}{x+y+z+t}\)
\(\Rightarrow M>\frac{x+y+z+t}{x+y+z+t}=1\)
Lại có :
\(x< x+y+z\Rightarrow\frac{x}{x+y+z}< \frac{x+t}{x+y+z+t}\)
Tương tự, ta có
\(\frac{y}{x+y+t}< \frac{y+z}{x+y+z+t}\)
\(\frac{z}{y+z+t}< \frac{z+x}{x+y+z+t}\)
\(\frac{t}{x+z+t}< \frac{t+y}{x+y+z+t}\)
\(\Rightarrow M< \frac{2\times\left(x+y+z+t\right)}{x+y+z+t}=2\)
\(\Rightarrow1< M< 2\)
\(\Rightarrow M\)không là số tự nhiên
k cho mình nha nha nha
a) \(\left(-2\right)^3+2^2+\left(-1\right)^{20}+\left(-2\right)^0\)
\(=-8+4+1+1=-2\)
b) \(\left(3^2\right)^2-\left(-5^2\right)^2+\left[\left(-2\right)^3\right]^2\)
\(=9^2-\left(-25\right)^2+\left(-8\right)^2\)
\(=81-625+64=-480\)
c) Bạn sửa lại đề!