Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(8x+3y⋮11\Leftrightarrow7\left(8x+3y\right)⋮11\)(vì \(\left(7,11\right)=1\))
\(\Leftrightarrow\left[\left(56x-5.11x\right)+\left(21y-2.11y\right)\right]⋮11\)
\(\Leftrightarrow\left(x-y\right)⋮11\).
b) \(\left(4x+3y\right)⋮13\Leftrightarrow5\left(4x+3y\right)⋮13\)(vì \(\left(5,13\right)=1\))
\(\Leftrightarrow\left[\left(20x-13x\right)+\left(15y-13y\right)\right]⋮13\)
\(\Leftrightarrow\left(7x+2y\right)⋮13\).
a) ta có: \(\frac{x}{y}=\frac{3}{4}\Rightarrow4x=3y\)
\(D=\frac{4x-5y}{3x+4y}=\frac{3y-5y}{3y+4y-x}=\frac{-2y}{7y-x}=\frac{-2y}{7y-y3:4}\)
\(=\frac{-2y}{\frac{25}{4}y}=-2y:\left(\frac{25}{4}y\right)=-\frac{8}{25}\)
b) ta có: M=3x.(x-y) chia hết cho 11
N = y2 - x2 = y2 - xy - x2 + xy = y.(y-x) - x.(x-y) = (y-x).(y+x) = - (x-y).(y+x) chia hết cho 11
=> M-N chia hết cho 11 (đpcm)
\(P(x)=4x^2-1\)
\(4x^2-1=0\)
\(\Leftrightarrow 4x^2=1\)
\(\Leftrightarrow x^2=\frac{1}{4}\)
\(\Rightarrow\left[\begin{array}{} x=\frac{1}{2}\\ x=\frac{-1}{2} \end{array} \right.\)
Vậy đa thức có nghiệm: \(x=\frac{1}{2};x=\frac{-1}{2}\)
a. 4 chia hết cho x - 1
=> x - 1 \(\in\)Ư(4) = {-4; -1; 1; 4}
=> x \(\in\){-3; 0; 2; 5}
b. 4x + 3 chia hết cho x - 2
=> (4x + 3) - 4.(x - 2) chia hết cho x - 2
=> 4x + 3 - 4x + 8 chia hết cho x - 2
=> 11 chia hết cho x - 2
=> x - 2 \(\in\)Ư(11) = {-11; -1; 1; 11}
=> x \(\in\){-9; 1; 3; 13}.
a) Vì 4 chia hết cho x-1 => \(\left(x-1\right)\inƯ\left(4\right)=\left\{1;2;4-1;-2;-4\right\}\)
Ta có bảng sau:
x-1 | 1 | 2 | 4 | -1 | -2 | -4 |
x | 2 | 3 | 5 | 0 | -1 | -3 |
=> x={2;3;5;0;-1;-3}
b) Vì 4x+3 chia hết cho x-2 => 4(x-2)+11 chia hết cho x-2
Mà 4(x-2) chia hết cho x-2 => 11 chia hết cho x-2
\(\Rightarrow\left(x-2\right)\inƯ\left(11\right)=\left\{1;-11;11;-1\right\}\)
Ta có bảng sau:
x-2 | 1 | -1 | 11 | -11 |
x | 3 | 1 | 13 | -9 |
=> x={3;1;13;-9}
a. 4 chia hết cho x - 1
=> x - 1 ∈Ư(4) = {-4; -1; 1; 4}
=> x ∈{-3; 0; 2; 5}
b. 4x + 3 chia hết cho x - 2
=> (4x + 3) - 4.(x - 2) chia hết cho x - 2
=> 4x + 3 - 4x + 8 chia hết cho x - 2
=> 11 chia hết cho x - 2
=> x - 2 ∈Ư(11) = {-11; -1; 1; 11}
=> x ∈{-9; 1; 3; 13}.
Đặt \(P\left(x\right)=x^3+ax^2-4\) ; \(Q\left(x\right)=x^2+4x+4\)
Do \(Q\left(x\right)=\left(x+2\right)^2\) có 1 nghiệm \(x=-2\) nên \(P\left(x\right)\) chia hết cho \(Q\left(x\right)\) khi \(P\left(-2\right)=0\)
\(\Rightarrow\left(-2\right)^3+a.\left(-2\right)^2-4=0\)
\(\Rightarrow a=3\)
Thử lại: \(P\left(x\right)=x^3+3x^2-4=\left(x-1\right)\left(x^2+4x+4\right)\) chia hết \(x^2+4x+4\) (thỏa mãn)
Vậy \(a=3\)