K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 12 2016

  4x^2-25-(2x-5)(2x+7)=0 
<=> 4x^2 - 25 - (4x^2 + 14x - 10x - 35) = 0 
<=> 4x^2 - 25 - 4x^2 - 14x + 10x + 35 = 0 
<=> -4x + 10 = 0 
<=> x = -10/-4 
<=> x = 5/2

28 tháng 12 2016

  4x^2-25-(2x-5)(2x+7)=0 
<=> 4x^2 - 25 - (4x^2 + 14x - 10x - 35) = 0 
<=> 4x^2 - 25 - 4x^2 - 14x + 10x + 35 = 0 
<=> -4x + 10 = 0 
<=> x = -10/-4 
<=> x = 5/2

21 tháng 10 2016

\(4x^2-25-\left(2x-5\right)\left(2x+7\right)=0\\ \Leftrightarrow4x^2-25-\left(4x^2+14x-10x-35\right)=0\\ \Leftrightarrow4x^2-25-4x^2-14x+10x+35=0\\ \Leftrightarrow-4x+10=0\)
\(\Leftrightarrow x=\frac{-10}{-4}\\ \Leftrightarrow x=\frac{5}{2}\)

24 tháng 10 2017

mk ko bt 123

18 tháng 11 2019

Suy ra (2x-4)-(3x-3×5)=1 Suy ra(2x-4)-3x+15=1 Suy ra 2x-4-3x+15=1 Suy ra (2x-3x)+(15-4)=1 -1x+11=1 1-11=-1x -1x=-10 X=10

4x2 - 25 - 5(2x + 7 ) = 0

=> 4x2 - 25 - 10x - 35 = 0

=> 4x2 - 10x - 60 = 0 

đến dố bạn tự giải nốt nha sử dụng pt hoặc tính dấy là ra 

Study well 

14 tháng 8 2019

mình sửa đề chút nha!   

     4x^2 - 25 - (2x - 5)(2x + 7) = 0

<=>(2x - 5)(2x + 5) - (2x - 5)(2x + 7) = 0

<=>(2x - 5)(2x + 5 - 2x -7) = 0

<=> -2(2x - 5) = 0

<=> -4x + 10 = 0

<=>  -4x        = -10

<=>         x    = 5/2  

21 tháng 10 2016

8x2+30x+7=0

 8x2+16x+14x+7=0

8x(x+2) +7(x+2)=0

(8x+7)(x+2)=0

=>\(\orbr{\begin{cases}8x+7=0\\x+2=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-\frac{7}{8}\\x=-2\end{cases}}}\)

21 tháng 10 2016

a)

4x2-8x+4=2(1-x)(x+1)

4x2-8x+4-2+2x2=0

6x2-8x+2=0

2(3x2-4x+1)=0

3x2-3x-x+1=0

3x(x-1) -(x-1)=0

(3x-1)(x-1)=0

\(\Rightarrow\orbr{\begin{cases}3x-1=0\\x-1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{1}{3}\\x=1\end{cases}}}\)

19 tháng 10 2019

4x2 - 25 - (2x - 5)(2x + 7) = 0

<=> (2x)2 - 52 - (2x - 5)(2x + 7) = 0

<=> (2x - 5)(2x + 5) - (2x - 5)(2x + 7) = 0

<=> (2x - 5)(2x + 5 - 2x - 7) = 0

<=> (2x - 5) . (-2) = 0

<=> 2x - 5 = 0

<=> 2x = 5

<=> x = 5/2

19 tháng 6 2019

\(o,x^2-9x+20=0\)

\(\Leftrightarrow x^2-4x-5x+20=0\)

\(\Leftrightarrow x\left(x-4\right)-5\left(x-4\right)=0\)

\(\Leftrightarrow\left(x-4\right)\left(x-5\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-4=0\\x-5=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=4\\x=5\end{cases}}\)

19 tháng 6 2019

\(n,3x^3-3x^2-6x=0\)

\(\Leftrightarrow3x\left(x^2-x-2\right)=0\)

\(\Leftrightarrow3x\left(x^2+x-2x-2\right)=0\)

\(\Leftrightarrow3x\left[x\left(x+1\right)-2\left(x+1\right)\right]=0\)

\(\Leftrightarrow3x\left(x+1\right)\left(x-2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}\orbr{\begin{cases}3x=0\\x+1=0\end{cases}}\\x-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}\orbr{\begin{cases}x=0\\x=-1\end{cases}}\\x=2\end{cases}}\)

23 tháng 10 2016

-_- bài này hôm qua lm rùi

3 tháng 8 2019

\(x\left(2x-7\right)-4x+14=0\Leftrightarrow\left(x-2\right)\left(2x-7\right)=0\Leftrightarrow\left[{}\begin{matrix}x-2=0\\2x-7=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\frac{7}{2}\end{matrix}\right.\)

\(x^2\left(x-1\right)-4\left(x-1\right)=\left(x^2-4\right)\left(x-1\right)=\left(x-2\right)\left(x+2\right)\left(x-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x+2=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-2\\x=1\end{matrix}\right.\)

\(x^4-x^3-x^2+x=x\left(x^3+1\right)-x^2\left(x+1\right)=x\left(x+1\right)\left(x^2-x+1-x^2\right)=x\left(x+1\right)\left(1-x\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x+1=0\\1-x\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\pm1\end{matrix}\right.\)

a) \(x\left(2x-7\right)-4x+14-0\Leftrightarrow2x^2-11x+14=0\Leftrightarrow2x^2-4x-7x+14=0\Leftrightarrow2x\left(x-2\right)-7\left(x-2\right)=0\Leftrightarrow\left(2x-7\right)\left(x-2\right)=0\Leftrightarrow\left[{}\begin{matrix}x=3,5\\x=2\end{matrix}\right.\)

b) \(x^2\left(x-1\right)-4x+4=0\Leftrightarrow x^2\left(x-1\right)-4\left(x-1\right)=0\Leftrightarrow\left(x-1\right)\left(x-2\right)\left(x+2\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\\x=-2\end{matrix}\right.\)

c) \(x+x^2-x^3-x^4=0\Leftrightarrow x\left(x^3+x^2-x-1\right)=0\Leftrightarrow x\left[x\left(x^2-1\right)+\left(x^2-1\right)\right]=0\Leftrightarrow x\left(x+1\right)\left(x^2-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\\x=-1\end{matrix}\right.\)

d) \(2x^3+3x^2+2x+3=0\Leftrightarrow x^2\left(2x+3\right)+2x+3=0\Leftrightarrow\left(x^2+1\right)\left(2x+3\right)=0\Leftrightarrow x=-1,5\left(x^2+1>0\forall x\right)\)

e) \(4x^2-25-\left(2x-5\right)\left(2x+7\right)=0\Leftrightarrow\left(2x-5\right)\left(2x+5\right)-\left(2x-5\right)\left(2x+7\right)=0\Leftrightarrow\left(2x-5\right)\left(2x+5-2x-7\right)=0\Leftrightarrow2x-5=0\Leftrightarrow x=2,5\)

g) \(x^3+27+\left(x+3\right)\left(x-9\right)=0\Leftrightarrow\left(x+3\right)\left(x^2-3x+9\right)+\left(x+3\right)\left(x-9\right)=0\Leftrightarrow\left(x+3\right)\left(x^2-3x+9+x-9\right)=0\Leftrightarrow x\left(x+3\right)\left(x-2\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-3\\x=2\end{matrix}\right.\)