Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\Leftrightarrow4^x\left(\dfrac{3}{2}+\dfrac{5}{3}\cdot4^2\right)=4^8\left(\dfrac{3}{2}+\dfrac{5}{3}\cdot4^2\right)\)
=>4^x=4^8
=>x=8
b: \(\Leftrightarrow2^x\cdot\dfrac{1}{2}+2^x\cdot2=2^{10}\left(2^2+1\right)\)
=>2^x=2^11
=>x=11
c: =>1/6*6^x+6^x*36=6^15(1+6^3)
=>6^x=6*6^15
=>x=16
d: \(\Leftrightarrow8^x\left(\dfrac{5}{3}\cdot8^2-\dfrac{3}{5}\right)=8^9\left(\dfrac{5}{3}\cdot8^2-\dfrac{3}{5}\right)\)
=>x=9
=2^12.3^5-(2^2)^6.(3^2)^2/2^12.3^6+(2^3)^4.3^5
=2^12.3^5-2^12.3^4/2^12.3^6+2^12.3^5
=2^12.3^4.(3-1)/2^12.3^4.(3^2+3)
=2/12
=1/6
CẬU XEM LẠI GIÙM MÌNH NHÉ!
- \(\frac{4^6.3^4.9^5}{6^{12}}=\frac{\left(2^2\right)^6.3^4.\left(3^2\right)^5}{\left(2.3\right)^{12}}=\frac{2^{12}.3^4.3^{10}}{2^{12}.3^{12}}=\frac{2^{12}.3^{14}}{2^{12}.3^{12}}=3^2=9\)
- \(\frac{3^{10}.11+9^5.5}{3^9.2^4}=\frac{3^{10}.11+\left(3^2\right)^5.5}{3^9.16}=\frac{3^{10}.11+3^{10}.5}{3^9.16}=\frac{3^{10}.\left(11+5\right)}{3^9.16}=\frac{3^{10}.16}{3^9.16}=3\)
- 2100 - 299 - 298 - ... - 22 - 2
= 2100 - (299 + 298 + ... + 22 + 2)
Đặt A = 299 + 298 + ... + 22 + 2
2A = 2100 + 299 + ... + 23 + 22
2A - A = (2100 + 299 + ... + 23 + 22) - (299 + 298 + ... + 22 + 2)
A = 2100 - 2
Ta có:
2100 - 299 - 298 - ... - 22 - 2
= 2100 - (2100 - 2)
= 2100 - 2100 + 2
= 0 + 2
= 2
- 38 : 36 + (22)4 : 29
= 32 + 28 : 29
\(=9+\frac{1}{2}\)
\(=\frac{18}{2}+\frac{1}{2}=\frac{19}{2}\)
\(2^{12}.3^5-4^6.9^2=663552\)
\(\left(2^2.3\right)^6+8^4.3^5=3981312\)
\(\frac{2^{12}\cdot3^5-4^6\cdot9^2}{\left(2^2\cdot3\right)^6+8^4\cdot3^4}=\frac{2^{12}\cdot3^5-2^{12}\cdot3^4}{2^{12}\cdot3^6+2^{12}\cdot3^4}=\frac{2^{12}\cdot\left(3^5-3^4\right)}{2^{12}\cdot\left(3^6+3^4\right)}=\frac{2^{12}\cdot3}{2^{12}\cdot3^4\cdot2\cdot5}=\frac{1}{3^3\cdot2\cdot5}=\frac{1}{270}\)
\(\frac{1}{2}.2^n+4.2^n=9.2^5\Rightarrow2^n\left(\frac{1}{2}+4\right)=288\Rightarrow2^n.\frac{9}{2}=288\Rightarrow2^{n-2}.9=288\Rightarrow2^{n-2}=32\)(dấu "=>" số 3 bn sửa thành 2n-1.9=288=>2n-1=32 nha)
=>2n-1=25=>n-1=5=>n=5+1=6
vậy......
~~~~~~~~~~~~~~~
P = \(2^{12}\cdot3^5-\left(2^2\right)^6\cdot3^5\cdot3\)
\(=2^{12}\cdot3^5-2^{12}\cdot3^5\cdot3\)
\(=2^{12}\cdot3^5\left(1-3\right)\)
\(=2^{12}\cdot-2\cdot3^5\)
\(=-2^{13}\cdot3^5\)
b)
\(=2^{12}\cdot\left(3^2\right)^3+\left(2^3\right)^4\cdot3^6\)
\(=2^{12}\cdot3^6+2^{12}\cdot3^6\)
\(=2\cdot2^{12}\cdot3^6\)
\(=2^{13}\cdot3^6\)