K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 10 2023

Để chứng minh ΔAEB = ΔAEC, ta có thể sử dụng nguyên lý cắt giao. Vì AB = AC và AE là tia phân giác góc A, nên ta có AE là đường trung trực của đoạn thẳng BC. Từ đó, ta có AE ⊥ BC. Vì AE là đường trung trực của đoạn thẳng BC, nên ta cũng có BE = EC. Như vậy, ta đã chứng minh được ΔAEB = ΔAEC.

15 tháng 4 2020

a, có AE là pg của ^BAC (gt) ; ^BAC = 60 (gt) => ^DAB = 30 

xét tam giác ABC vuông tại C (gt) có ^BAC = 60 (gt) => ^CBA = 30

=> ^DAB = ^CBA 

xét tam giác BDA và tam giác ACB có : AB chung

^BDA = ^ACB = 90

=> tam giác BDA = tam giác ACB (ch-gn)

=> AD = BC (Đn)

b, có : ^CBA = ^DAB = 30 (câu a)

=> tam giác BEA cân tại E (dh) 

có EK là đường cao (gt)

=> EK đồng thời là đường trung tuyến của tam giác BEA (đl)

=> K là trung điểm của AB (đn)

=> BK = AK (đn)

c, kẻ BD cắt CA tại M 

xét tam giác BMA có : AE _|_ BD ; BE _|_ CA; EK _|_ AB

=> AC;EK;BD đồng quy

15 tháng 4 2020

ban oi dn va dh viet tat tu j v

Tự vẽ hình nha

a) ABD và EBD có: abd = ebd (bd la phân giác), BD chung

=> bằng nhau (cạnh huyền - góc nhọn)

=> AB = Be (2 cạnh tương ứng) => abe cân

b) ta có: AD = DE (vì tg ABD = tg EBD) mà DE < CD (Cạnh huyên là cạnh lớn nhất) nên AD < CD (ĐPCM)

4 tháng 3 2020

Còn câu c,d thì sao bạn?