Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3xy + 2y + 6x = 17
<=> (3xy + 6x) + 2y = 17
<=> 3x(y + 2) + 2y + 4 = 17 + 4
<=> 3x(y + 2) + 2(y + 2) = 21
<=> (y + 2)(3x + 2) = 21
=> y + 2 và 3x + 2 là ước của 21
( Đến đây bạn tự liệt kê ước của 21 rồi thử từng trường hợp của y + 2 và 3x + 2 nha )
3xy - 6x + y + 3 = 0
=> 3xy + y - 6x = -3
=> y(3x + 1) = 6x - 3
=> 6x - 3 chia hết cho 3x + 1
Mà 3x + 1 chia hết cho 3x + 1 => 6x + 2 chia hết cho 3x + 1
Do đó 6x + 2 - 6x + 3 chia hết cho 3x + 1
=> 5 chia hết cho 3x + 1
=> 3x + 1 thuộc {1; -1; 5; -5}
=> 3x thuộc {0; -2; 4; -6}
=> x thuộc {0; -2} (Vì x thuộc Z)
<=>(3x+1)y-6x+3=0
=>(3x+1)y-6x-0+3=0
=>3x+1=0
=>3x=-1
=>3(y-2)=0
=>3y=3.2( rut gon 3)
=>y=2
x^3+y^3=3xy-1
x^3+y^3-3xy+1=0
(x+y)^3-3xy(x+y)-3xy+1=0
(x+y+1)(x^2+2xy+y^2-x-y+1)-3xy(x+y+1)=0
(x+y+1)(x^2+2xy+y^2-x-y+1-3xy)=0
suy ra +)x+y+1=0.VÌ x,y thuộc N* nên x+y+1 khác 0
+)x^2-xy+y^2+1-x-y=0
2(x^2-xy+y^2+1-x-y)=0
2x^2-2xy+2y^2+2-2x-2y=0
(x^2-2xy+y^2)+(x^2-2x+1)+(y^2-2y+1)=0
(x-y)^2+(x-1)^2+(y-1)^2=0
suy ra +)x-y=0
+)x-1=0
+)y-1=0
Vậy x=y=1
3x(y-2)-2(y-2)=4
=> (y-2)(3x-2)=4
=> y-2 va 3x-2 ∈U(4)=(1,2,4,-1,-2,-4)
Ban tu giai ra x,y