Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1,(2x + 3 ) \(^{^{ }2}\)=\(\left(2x\right)^2+2.2x.3+3^2\)
=\(4x^2+12x+9\)
2, ( 3x + 2y )\(^2=\left(3x\right)^2+2.3x.2y+\left(2y\right)^2\)
=\(9x^2+12xy+4y^2\)
3,(3a -1 )\(^2=\left(3a\right)^2-2.3a.1+1^2\)
\(=9a^2-6a+1\)
4, (a - 2 )\(^2=a^2-2.a.2+2^2\)
=\(a^2-4a+4\)
5, ( 1 - 5a )\(^2=1^2-2.1.5a+\left(5a\right)^2\)
=\(1-10a+25a\)
6, ( x - 4 )\(^3=x^3-3x^24+3x4^2-4^3\)
=\(x^3-12x^2+48x-64\)
a/ \(=\left(x^2-1\right)^2+x\left(x^2-1\right)-2x\left(x^2-1\right)-2x^2\)
\(=\left(x^2-1\right)\left(x^2+x-1\right)-2x\left(x^2+x-1\right)\)
\(=\left(x^2-2x-1\right)\left(x^2+x-1\right)\)
b/ \(=4\left(x^2+x+1\right)^2+4x\left(x^2+x+1\right)+x\left(x^2+x+1\right)+x^2\)
\(=4\left(x^2+x+1\right)\left(x^2+2x+1\right)+x\left(x^2+2x+1\right)\)
\(=\left(x^2+2x+1\right)\left(4x^2+5x+4\right)\)
\(=\left(x+1\right)^2\left(4x^2+5x+4\right)\)
c/ \(=\left(x^2-x+2\right)^4-x^2\left(x^2-x+2\right)^2-2x^2\left(x^2-x+2\right)^2+2x^4\)
\(=\left(x^2-x+2\right)^2\left[\left(x^2-x+2\right)^2-x^2\right]-2x^2\left[\left(x^2-x+2\right)^2-x^2\right]\)
\(=\left[\left(x^2-x+2\right)^2-x^2\right]\left[\left(x^2-x+2\right)^2-2x^2\right]\)
\(=\left(x^2-2x+2\right)\left(x^2+2\right)\left[\left(x^2-x+2\right)^2-2x^2\right]\)
d/
Bạn coi lại đề, với hệ số này ko phân tích được
e/
\(=10\left(x^2-2x+3\right)^4-10x^2\left(x^2-2x+3\right)^2+x^2\left(x^2-2x+3\right)^2-x^4\)
\(=10\left(x^2-2x+3\right)^2\left[\left(x^2-2x+3\right)^2-x^2\right]+x^2\left[\left(x^2-2x+3\right)^2-x^2\right]\)
\(=\left[\left(x^2-2x+3\right)^2-x^2\right]\left[10\left(x^2-2x+3\right)^2+x^2\right]\)
\(=\left(x^2-3x+3\right)\left(x^2-x+3\right)\left[10\left(x^2-2x+3\right)^2+x^2\right]\)
e:
Tham khảo:
a: \(\Leftrightarrow x^2-2x+1+4x^2+4x+4-5x^2+5=0\)
\(\Leftrightarrow2x+10=0\)
hay x=-5