Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ \(x^2\left(x-5\right)+5-x=0\)
\(\Leftrightarrow x^2\left(x-5\right)-\left(x-5\right)=0\)
\(\Leftrightarrow\left(x-5\right)\left(x^2-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x-5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x+1=0\\x-5=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\\x=5\end{matrix}\right.\)
Vậy...
b/ \(3x^4-9x^3=-9x^2+27x\)
\(\Leftrightarrow3x^4-9x^3+9x^2-27x=0\)
\(\Leftrightarrow3x^3\left(x-3\right)+9x\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(3x^3+9x\right)=0\)
\(\Leftrightarrow3x\left(x-3\right)\left(x^2+3\right)=0\)
Vì \(x^2+3>0\forall x\)
\(\Leftrightarrow3x\left(x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-3=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right.\)
Vậy..
c/ \(x^2\left(x+8\right)+x^2=-8x\)
\(\Leftrightarrow x^2\left(x+8\right)+x^2+8x=0\)
\(\Leftrightarrow x^2\left(x+8\right)+x\left(x+8\right)=0\)
\(\Leftrightarrow x\left(x+8\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+8=0\\x+1=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-8\\x=-1\end{matrix}\right.\)
Vậy...
d/ \(\left(x+3\right)\left(x^2-3x+5\right)=x^2+3x\)
\(\Leftrightarrow\left(x+3\right)\left(x^2-3x+5\right)-x\left(x+3\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(x^2-4x+5\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left[\left(x-2\right)^2+1\right]=0\)
Vì \(\left(x-2\right)^2+1>0\forall x\)
\(\Leftrightarrow x+3=0\Leftrightarrow x=-3\)
Vậy..
Úi, câu d bạn nên làm theo cách của bạn trên đúng hơn nha :< Mình nghĩ câu d mình lập luận bị sai rồi ó
\(a.\frac{4x-8}{2x^2+1}=0\\ \Leftrightarrow4x-8=0\\ \Leftrightarrow4\left(x-2\right)=0\\ \Leftrightarrow x-2=0\\ \Leftrightarrow x=2\)
Vậy nghiệm của phương trình trên là \(2\)
\(b.\frac{x^2-x-6}{x-3}=0\left(x\ne3\right)\\\Leftrightarrow x^2-x-6=0\\ \Leftrightarrow x^2+2x-3x-6=0\\\Leftrightarrow x\left(x+2\right)-3\left(x+2\right)=0\\\Leftrightarrow \left(x-3\right)\left(x+2\right)=0\\\Leftrightarrow \left[{}\begin{matrix}x-3=0\\x+2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=3\left(ktm\right)\\x=-2\left(tm\right)\end{matrix}\right.\)
Vậy nghiệm của phương trình trên là \(-2\)
Bài 1.
\( a)\dfrac{{4x - 8}}{{2{x^2} + 1}} = 0 (x \in \mathbb{R})\\ \Leftrightarrow 4x - 8 = 0\\ \Leftrightarrow 4x = 8\\ \Leftrightarrow x = 2\left( {tm} \right)\\ b)\dfrac{{{x^2} - x - 6}}{{x - 3}} = 0\left( {x \ne 3} \right)\\ \Leftrightarrow \dfrac{{{x^2} + 2x - 3x - 6}}{{x - 3}} = 0\\ \Leftrightarrow \dfrac{{x\left( {x + 2} \right) - 3\left( {x + 2} \right)}}{{x - 3}} = 0\\ \Leftrightarrow \dfrac{{\left( {x + 2} \right)\left( {x - 3} \right)}}{{x - 3}} = 0\\ \Leftrightarrow x - 2 = 0\\ \Leftrightarrow x = 2\left( {tm} \right) \)
Bài 2.
\(c)\dfrac{{x + 5}}{{3x - 6}} - \dfrac{1}{2} = \dfrac{{2x - 3}}{{2x - 4}}\)
ĐK: \(x\ne2\)
\( Pt \Leftrightarrow \dfrac{{x + 5}}{{3x - 6}} - \dfrac{{2x - 3}}{{2x - 4}} = \dfrac{1}{2}\\ \Leftrightarrow \dfrac{{x + 5}}{{3\left( {x - 2} \right)}} - \dfrac{{2x - 3}}{{2\left( {x - 2} \right)}} = \dfrac{1}{2}\\ \Leftrightarrow \dfrac{{2\left( {x + 5} \right) - 3\left( {2x - 3} \right)}}{{6\left( {x - 2} \right)}} = \dfrac{1}{2}\\ \Leftrightarrow \dfrac{{ - 4x + 19}}{{6\left( {x - 2} \right)}} = \dfrac{1}{2}\\ \Leftrightarrow 2\left( { - 4x + 19} \right) = 6\left( {x - 2} \right)\\ \Leftrightarrow - 8x + 38 = 6x - 12\\ \Leftrightarrow - 14x = - 50\\ \Leftrightarrow x = \dfrac{{27}}{5}\left( {tm} \right)\\ d)\dfrac{{12}}{{1 - 9{x^2}}} = \dfrac{{1 - 3x}}{{1 + 3x}} - \dfrac{{1 + 3x}}{{1 - 3x}} \)
ĐK: \(x \ne -\dfrac{1}{3};x \ne \dfrac{1}{3}\)
\( Pt \Leftrightarrow \dfrac{{12}}{{1 - 9{x^2}}} - \dfrac{{1 - 3x}}{{1 + 3x}} - \dfrac{{1 + 3x}}{{1 - 3x}} = 0\\ \Leftrightarrow \dfrac{{12}}{{\left( {1 - 3x} \right)\left( {1 + 3x} \right)}} - \dfrac{{1 - 3x}}{{1 + 3x}} - \dfrac{{1 + 3x}}{{1 - 3x}} = 0\\ \Leftrightarrow \dfrac{{12 - {{\left( {1 - 3x} \right)}^2} - {{\left( {1 + 3x} \right)}^2}}}{{\left( {1 - 3x} \right)\left( {1 + 3x} \right)}} = 0\\ \Leftrightarrow \dfrac{{12 + 12x}}{{\left( {1 - 3x} \right)\left( {1 + 3x} \right)}} = 0\\ \Leftrightarrow 12 + 12x = 0\\ \Leftrightarrow 12x = - 12\\ \Leftrightarrow x = - 1\left( {tm} \right) \)
( 3x - 2 )( 9x2 + 6x + 4 ) - ( 2x - 5 )( 2x + 5 ) = ( 3x - 1 )3 - ( 2x + 3 )2 + 9x( 3x - 1 )
⇔ 27x3 - 8 - ( 4x2 - 25 ) = 27x3 - 27x2 + 9x - 1 - ( 4x2 + 12x + 9 ) + 27x2 - 9x
⇔ 27x3 - 8 - 4x2 + 25 = 27x3 - 1 - 4x2 - 12x - 9
⇔ 27x3 - 4x2 + 17 - 27x3 + 4x2 + 12x + 10 = 0
⇔ 12x + 27 = 0
⇔ 12x = -27
⇔ x = -27/12 = -9/4
a: \(=\left(x^2+4\right)\left(x^2-4\right)-\left(x^4-9\right)\)
\(=x^4-16-x^4+9=-7\)
b: \(=27x^3-8-27x^3+6=-2\)
c: \(=\left(3x+5+2-3x\right)^2=7^2=49\)
\(x\left(3x-5\right)-9x+15=0\)
\(\Leftrightarrow x\left(3x-5\right)-3\left(3x-5\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(3x-5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-3=0\\3x-5=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=3\\x=\frac{5}{3}\end{cases}}\)
\(3x\left(x-5\right)-2\left(5-x\right)=0\)
\(\Leftrightarrow3x\left(x-5\right)+2\left(x-5\right)=0\)
\(\Leftrightarrow\left(3x+2\right)\left(x-5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}3x+2=0\\x-5=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{-2}{3}\\x=5\end{cases}}\)
hinh nhu la de bi sai