Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(3^{2x}+3^{2x+1}=324\)
\(\Rightarrow3^{2x}+3^{2x}.3=324\)
\(\Rightarrow3^{2x}\left(1+3\right)=324\)
\(\Rightarrow3^{2x}.4=324\)
\(\Rightarrow3^{2x}=324:4=81=3^4\)
\(\Rightarrow2x=4\)
\(\Rightarrow x=4:2=2\)
32x + 32x + 1 = 324
=> 32x + 32x.3 = 324
=> 32x.(1 + 3) = 324
=> 32x.4 = 324
=> 32x = 324 : 4
=> 32x = 81
=> 32x = 34
=> 2x = 4
=> x = 2
\(3^x+3^{x+1}=324\)
\(\Leftrightarrow3^x\left(1+3^1\right)=324\)
\(\Leftrightarrow3^x\cdot4=324\)
\(\Leftrightarrow3^x=81\)
\(\Leftrightarrow3^x=3^4\Leftrightarrow x=4\)
3x + 3x+1 = 324
3x + 3x.3 = 324
3x.(1 + 3) = 324
3x.4 = 324
3x = 324 : 4
3x = 81
3x = 34
<=> x = 4
3x + 3x+1 = 324
3x. (1+3) = 324
3x . 4 = 324
=> 3x = 324 : 4 = 81
3x = 34
=> x = 4
3^x+3^x+1=324
<=> 3^x+3^x.3=324
<=>3^x.(1+3)=324
<=>3^x=324/4
<=>3^x=81
<=>3^x=3^4
=> x=4
Vậy x bằng 4
<=> 3^x(3+1)=324 <=> 3^x * 4 = 324 <=> 3^x = 81 <=> 3^x = 3^4 <=> x=4
Vậy x=4
9x+1-5.32x=324
=>9x.9-(32)x.5=324
=>9x.9-9x.5=324
=>9x(9-5)=324
=>9x.4=324
=>9x=324:4
=>9x=81
=>9x=92
=>x=2
vậy x=2
a) \(x^n.x^{2\left(n+1\right)}\)
= \(x^{n+2.\left(n+1\right)}=x^{n+2n+2}=x^{3n+2}\)
b) \(x^{n+3}.x^{2-n}=x^{n+3+2-n}=x^5\)
c) \(\left(-\dfrac{1}{3}x^{n+2}\right).\left(-3x^{n-1}\right)\)
= \(-x^{n+2+n-1}=-x^{2n+1}\)
d) \(\left(-\dfrac{1}{\dfrac{1}{2x^2y^3}}\right)^2\)
= \(\left(-1.\dfrac{2x^2y^3}{1}\right)^2=\left(-2x^2y^3\right)^2=4x^4y^6\)
e) \(\left(-0,1x^3y\right)^3=-0,001x^9y^3\)
3x + 3x+1 = 324
3x + 3x × 3 = 324
3x × (1 + 3) = 324
3x × 4 = 324
3x = 324 : 4
3x = 81 = 34
=> x = 4
Vậy x = 4
3^x+ 3^x . 3 =324
3^x(1+3) =324 tự làm nốt