K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 9 2017

\(\dfrac{3a^2x^2\left[ax\left(4a-5x\right)+7ax\right]+a^2x^3\left[15\left(a+x\right)-21\right]}{9a^3x^3}\)

\(=\dfrac{3a^2x^2\left(4a^2x-5ax^2+7ax\right)+a^2x^3\left(15a+15x-21\right)}{9a^3x^3}\)

\(=\dfrac{a^2x^2\left[3\left(4a^2x-5ax^2+7ax\right)+15a+15x-21\right]}{9a^3x^3}\)

\(=\dfrac{3\left(4a^2x-5ax^2+7ax\right)+3\left(5a+5a-7\right)}{9ax}\)

\(=\dfrac{4a^2x-5ax^2+7ax+5a+5x-7}{3ax}\)

Chúc bạn học tốt!!!

a) Ta có: \(4\left(2-x\right)^2+xy-2y\)

\(=4\left(x-2\right)^2+y\left(x-2\right)\)

\(=\left(x-2\right)\left[4\left(x-2\right)+y\right]\)

\(=\left(x-2\right)\left(4x-8+y\right)\)

b) Ta có: \(3a^2x-3a^2y+abx-aby\)

\(=3a^2\left(x-y\right)+ab\left(x-y\right)\)

\(=\left(x-y\right)\left(3a^2+ab\right)\)

\(=a\left(x-y\right)\left(3a+b\right)\)

c) Ta có: \(x\left(x-y\right)^3-y\left(y-x\right)^2-y^2\left(x-y\right)\)

\(=x\left(x-y\right)^3-y\left(x-y\right)^2-y^2\left(x-y\right)\)

\(=\left(x-y\right)\left[x\left(x-y\right)^2-y\left(x-y\right)-y^2\right]\)

\(=\left(x-y\right)\left[x\left(x^2-2xy+y^2\right)-yx+y^2-y^2\right]\)

\(=\left(x-y\right)\left(x^3-2x^2y+xy^2-xy\right)\)

d) Ta có: \(2ax^3+6ax^2+6ax+18a\)

\(=2ax^2\left(x+3\right)+6a\left(x+3\right)\)

\(=\left(x+3\right)\left(2ax^3+6a\right)\)

\(=2a\left(x+3\right)\left(x^3+3\right)\)

e) Ta có: \(x^2y-xy^2-3x+3y\)

\(=xy\left(x-y\right)-3\left(x-y\right)\)

\(=\left(x-y\right)\left(xy-3\right)\)

3 tháng 8 2019

\(2x^2-4x-5=2x^2-4x+2-7=2\left(x-1\right)^2-7\ge0-7=-7\Leftrightarrow x=1\)

\(-2x^2-6x+15=-2x^2-6x-4,5+19,5=-2\left(x+\frac{3}{2}\right)^2+19,5\le0+19,5=19,5\Leftrightarrow x=\frac{-3}{2}\)

3 tháng 8 2019

Bài 1 : Tìm giá trị lớn nhất, nhỏ nhất

a, \(2x^2-4x-5=2\left(x^2-2x+1\right)-7=2\left(x-1\right)^2-7\)

Vì \(2\left(x-1\right)^2\ge0\Rightarrow2x^2-4x-5\ge-7\)

\(''=''\Leftrightarrow x=1\)

b, \(-2x^2-6x+15=-2\left(x^2+2x.\frac{3}{2}+\frac{9}{4}\right)+\frac{39}{2}=-2\left(x+\frac{3}{2}\right)^2+\frac{39}{2}\)

Vì \(-2\left(x+\frac{3}{2}\right)^2\le0\Rightarrow-2x^2-6x+15\le\frac{39}{2}\)

\(''=''\Leftrightarrow x=-\frac{3}{2}\)

Bài 2 : Tìm x

a, \(2x^3-3x^2+2=0\) (tạm thời chưa ra)

b, \(x^4-2x^2+1=0\)

\(\Leftrightarrow\left(x^2-1\right)^2=0\Rightarrow x^2-1=0\Rightarrow x=\pm1\)

11 tháng 7 2021

`a)|2x+1|=5`

`<=>` \(\left[ \begin{array}{l}2x+1=5\\2x+1=-5\end{array} \right.\) 

`<=>` \(\left[ \begin{array}{l}2x=4\\2x=-6\end{array} \right.\) 

`<=>` \(\left[ \begin{array}{l}x=2\\x=-3\end{array} \right.\) 

`b)|2x+1|=0`

`<=>2x+1=0`

`<=>2x=-1`

`<=>x=-1/2`

`c)|2x+1|=7`

`<=>` \(\left[ \begin{array}{l}2x+1=7\\2x+1=-7\end{array} \right.\) 

`<=>` \(\left[ \begin{array}{l}2x=6\\2x=-8\end{array} \right.\) 

`<=>` \(\left[ \begin{array}{l}x=4\\x=-4\end{array} \right.\) 

`d)|2x+5|=|3x-7|`

`<=>` \(\left[ \begin{array}{l}2x+5=3x-7\\2x+5=7-3x\end{array} \right.\) 

`<=>` \(\left[ \begin{array}{l}x=12\\5x=2\end{array} \right.\) 

`<=>` \(\left[ \begin{array}{l}x=12\\x=\dfrac25\end{array} \right.\) 

`e)|2x+7|=1`

`<=>` \(\left[ \begin{array}{l}2x+7=1\\2x+7=-1\end{array} \right.\) 

`<=>` \(\left[ \begin{array}{l}2x=-6\\2x=-8\end{array} \right.\) 

`<=>` \(\left[ \begin{array}{l}x=3\\x=-4\end{array} \right.\) 

`g)|x-2|+|2x-3|=2`

Nếu `x>=2=>|x-2|=x-2,|2x-3|=2x-3`

`pt<=>x-2+2x-3=2`

`<=>3x-5=2`

`<=>3x=7`

`<=>x=7/3(tm)`

Nếu `x<=3/2=>|x-2|=2-x,|2x-3|=3-2x`

`pt<=>2-x+3-2x=2`

`<=>5-3x=2`

`<=>3x=3`

`<=>x=1(tm)`

Nếu `3/2<=x<=2=>|x-2|=2-x,|2x-3|=2x-3`

`pt<=>2-x+2x-3=2`

`<=>x-1=2`

`<=>x=3(l)`

`h)|x+2|+|1-x|=3x+2`

Vì `VT>=0=>3x+2>=0=>x>=-2/3`

`=>|x+2|=x+2`

`pt<=>x+2+|1-x|=3x+2`

`<=>|1-x|=2x(x>=0)`

`<=>` \(\left[ \begin{array}{l}2x=1-x\\2x=x-1\end{array} \right.\) 

`<=>` \(\left[ \begin{array}{l}3x=1\\x=-1\end{array} \right.\) 

`<=>` \(\left[ \begin{array}{l}x=\dfrac13(TM)\\x=-1(KTM)\end{array} \right.\) 

AH
Akai Haruma
Giáo viên
11 tháng 7 2021

a.

$|2x+1|=5$
\(\Leftrightarrow \left[\begin{matrix} 2x+1=5\\ 2x+1=-5\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} x=2\\ x=-3\end{matrix}\right.\)

b.

$|2x+1|=0$

$\Leftrightarrow 2x+1=0$

$\Leftrightarrow x=-\frac{1}{2}$
c.

$|2x+1|=7$

\(\Leftrightarrow \left[\begin{matrix} 2x+1=7\\ 2x+1=-7\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} x=3\\ x=-4\end{matrix}\right.\)