Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: B=(1+3)+(32+33)+..........+(398+399)
=> B=1.(1+3)+32.(1+3)+............+398.(1+3)
=> B=1.4+32.4+.......+398.4
=> B=4.(1+32+..........+398)
Vậy B chia hết cho 4 ĐPCM
\(B=1+3+3^2+3^3+...+3^{98}+3^{99}\)
=> \(B=\left(1+3\right)+\left(3^2+3^3\right)+\left(3^4+3^5\right)+...+\left(3^{98}+3^{99}\right)\)
=> \(B=4+3^2\left(1+3\right)+3^4\left(1+3\right)+...+3^{98}\left(1+3\right)\)
=> \(B=4+3^3.4+3^4.4+...+3^{98}.4\)
=> \(B=4\left(3^2+3^4+...+3^{98}\right)\)
Vì 4 chia hết cho 4 => \(4\left(3^2+3^4+...+3^{98}\right)\) chia hết cho 4 => B chia hết cho 4
a/ta có:s=(1-3+32-33)+.................+(396-397+398-399)
=-20+.....................+396.(-20.(1+...................396))
suy ra s chia het cho -20
b/ 3s=3-32+33-34+.................+399-3100
3s+s=(3-32+33-34+..........................+399-3100 +(1-3+32-33)+............+398-399)
4s=1-3100
s=(1-3100):4
vì s chia hết cho -20 suy ra s chia hết cho 4 suy ra 1-3100 chia hêt cho 4 suy ra 3100:4 dư 1
nếu đúng thì tíc cho mình 2 cái nhé!
F = 1 + 3 + 32 + 33 + ..... + 399
F = 30 + 31 + 32 + 33 + ... + 399
F = ( 30 + 31 + 32 + 33 ) + ( 34 + 35 + 36 + 37 ) + .... + ( 396 + 397 + 398 + 399 )
F = 30( 1 + 31 + 32 + 33 ) + 34 ( 1 + 31 + 32 + 34 ) + ..... + 396( 1 + 31 + 32 + 33 )
F = 30 * 40 + 34 * 40 +....... + 396 * 40
F = 40 ( 30 + 34 + ..... + 396 )
có 40 chí hết cho 40
=> F chia hết cho 40
k đúng cho mk cả 2 lần trả lời nha
E = 109 + 108 + 107
E = 107( 102 + 10 + 1 )
E = 107 * 111
E = 106 * 10 * 111
E = 106 * 5 * 2 * 111
E = 106 * 5 * 222
có 222 chia hết cho 222 => 106 * 5 * 222 chia hết cho 222
=> 109 + 108 + 107 chí hết cho 222
cho \(M=1+3+3^2+...+3^{99}+3^{100}\)
=>\(M=1+\left(3+3^2+3^3\right)+...+\left(3^{98}+3^{99}+3^{100}\right)\)
\(=>M=1+3\left(1+3+3^2\right)+...+3^{98}\left(1+3+3^2\right)\)
\(=>M=1+13\left(3+...+3^{98}\right)\)
Mà \(13\left(3+3^{98}\right)⋮13\)
=> M chia cho 13 dư 1
+) \(M=1+3+3^2+...+3^{99}+3^{100}\)
\(\Leftrightarrow M=\left(1+3+3^2\right)+\left(3^3+3^4+3^5\right)+...+\left(3^{98}+3^{99}+3^{100}\right)\)
\(\Leftrightarrow M=\left(1+3+9\right)+3^3\left(1+3+9\right)+....+3^{98}\left(1+3+9\right)\)
\(\Leftrightarrow M=13+3^3\cdot14+....+3^{98}\cdot14\)
\(\Leftrightarrow M=13\left(1+3^3+....+3^{98}\right)\)
=> M chia 13 dư 0
A = 1 + 3 + 32 + 33 + ... + 399
3A = 3 + 32 + 33 + .. + 3100
3A -A = 3 + 32 + 33 + ... + 3100 - 1 - 3 - 32 - 399
2A = 3100 - 1
B - 2A = 3100 - ( 3100 - 1 ) = 1
3≡−1(mod4)⇒3100≡(−1)100=1(mod4)
Vậy 3100 chia 4 dư 1.
a) Ta có 3S=3−32+33−34+...+397−398+399−3100
⇒3S+S=1−3100⇒S=(1−3100)/4
Để chứng minh S chia hết cho 20 ta chứng minh 1−3100 chia hết cho 80.
Ta có 32=9≡−1(mod5)⇒3100≡(−1)50=1(mod5)⇒1−3100≡1−1=0(mod5)
Vậy 1−3100 ⋮5
Ta có 34=81≡1(mod16)⇒3100≡125=1(mod16)⇒1−3100≡1−1=0(mod16)
Vậy 1−3100 ⋮16
Do (5,16)=1⇒1−3100⋮16.5=80⇒(1−3100)/4 ⋮20⇒S thuộc B 20
Sorry vừa ròi mk nhầm S=\(\frac{1-3^{100}}{4}\)mới đúng nha
\(S=1-3+3^2-3^3+...+3^{98}-3^{99}.\)
\(3S=3-3^2+3^3-3^4+...+3^{99}-3^{100}.\)
\(3S+S=\left(3-3^2+3^3-3^4+...+3^{99}-3^{100}\right)+\left(1-3+3^2-3^3+...+3^{98}-3^{99}\right)\)
\(4S=-3^{100}+1\)
\(S=\frac{-3^{100}+1}{4}\)
đặt S = 3+32+33+34+35+......+32020
3S = 32 + 33 + 34 + 35 + 36 + 32021
3S - S = ( 32 + 33 + 34 + 35 + 36 + 32021) - ( 3+32+33+34+35+......+32020)
2S = 32021 - 3
S= \(\frac{3^{2021}-3}{2}\)
S = 1-3+32-33+...+398-399
3S=3-32+33-34+...+399-3100
=>3S-S=2S=1-3100
\(S=\frac{1-3^{100}}{2}\)