Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Gọi số tiền lãi 3 người nhận được sau 1 tháng lần lượt là $a,b,c$
Vì tiền lãi tỉ lệ thuận với tiền vốn nên tiền lãi tỉ lệ với $2,3,5$
Hay $\frac{a}{2}=\frac{b}{3}=\frac{c}{5}$
Theo bài ra ta cũng có: $a+b+c=36$
Áp dụng TCDTSBN:
$\frac{a}{2}=\frac{b}{3}=\frac{c}{5}=\frac{a+b+c}{2+3+5}=\frac{36}{12}=3$
$\Rightarrow a=3.2=6; b=3.3=9; c=3.5=15$ (triệu đồng)
#)Giải :
Gọi số tiền lãi của ba nhà sản xuất đó là x,y,z
Theo đề bài, ta có :
\(\frac{x}{7}=\frac{y}{8}=\frac{z}{9}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có :
\(\frac{x}{7}=\frac{y}{8}=\frac{z}{9}=\frac{x+y+z}{7+8+9}=\frac{240}{24}=10\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{7}=10\\\frac{y}{8}=10\\\frac{z}{9}=10\end{cases}\Rightarrow\hept{\begin{cases}x=70\\y=80\\z=90\end{cases}}}\)
Vậy số tiền lãi của ba người đó là 70 triệu đồng, 80 triệu đồng và 90 triệu đồng
- gọi số tiền lãi lần lượt là x,y,z,neen suy ra ta có:x/7,y/8,z/9 và x+y+z=240
- Aps dụng tính chất dãy tỉ số bằng nhau:x/7,y/8,z/9=x+y=z/7+8+9=240/24=10
- x/7=x=10*7=70
- y/8=y=10*8=80
- z/9=z=10*9=90
Gọi số tiền lãi sau một năm tỉ lệ thuận với 3;5;7 là x;y;z.
\(\frac{x}{3}=\frac{y}{5}=\frac{z}{7}\) và \(x+y+z=225\)( triệu )
Áp dụng tính chất của dãy tỉ số bằng nhau:
\(\frac{x}{3}=\frac{y}{5}=\frac{z}{7}=\frac{z+y+z}{3+5+7}=\frac{225}{15}=15\)
\(\hept{\begin{cases}\frac{x}{3}=15\Rightarrow x=15.3=45\\\frac{y}{5}=15\Rightarrow y=15.5=75\\\frac{z}{7}=15\Rightarrow z=15.7=105\end{cases}}\)
Vậy tiền lãi của 3 đơn vị kinh doanh sau 1 năm lần lượt là: 45;75;105 ( triệu )
Tổng số phần bằng nhau là:
3 + 5 + 7 = 15 ( phần )
Đơn vị 1 được lãnh:
225 000 000 : 15 x 3 = 45 000 000đ
Đon vị 2 được lãnh:
225 000 000 : 15 x 5 = 75 000 000đ
Đơn vị 3 được lãnh:
225 000 000 : 15 x 7 = 105 000 000đ
Mình chỉ biết làm theo cách tiểu học thôi
Gọi số tiền lãi sau 1 năm của 3 đơn vị lần lượt là a,b,c
Ta có : \(a:b:c=3:5:7\)
\(\Rightarrow\dfrac{a}{3}=\dfrac{b}{5}=\dfrac{c}{7}\)
Áp dụng tính chất dãy tỉ số bằng nhau, t/c
\(\Rightarrow\dfrac{a}{3}=\dfrac{b}{5}=\dfrac{c}{7}=\dfrac{a+b+c}{3+5+7}=\dfrac{225}{15}=15\)
\(\Rightarrow a=15.3=45\left(tr\right)\)
\(\Rightarrow b=15.5=75\left(tr\right)\)
\(\Rightarrow c=15.7=105\left(tr\right)\)
Vậy số tiền lãi của ba đơn vị sau 1 năm lần lượt là 45, 75 và 105 triệu đồng
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{3}=\dfrac{b}{5}=\dfrac{c}{7}=\dfrac{a+b+c}{3+5+7}=\dfrac{225000000}{15}=15000000\)
Do đó: a=45000000; b=75000000; c=105000000
Lời giải:
Gọi số tiền lãi ba người bạn có được lần lượt là $a,b,c$ (đồng).
Ta có: $a+b+c=190$
Vì số tiền lãi tỉ lệ với số tiền góp vốn nên:
$\frac{a}{5}=\frac{b}{6}=\frac{c}{8}$
Áp dụng TCDTSBN:
$\frac{a}{5}=\frac{b}{6}=\frac{c}{8}=\frac{a+b+c}{5+6+8}=\frac{190}{19}=10$
$\Rightarrow 10.5=50; b=10.6=60; c=8.10=80$ (triệu đồng)