Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tìm n phải ko bạn , bài này chắc của lớp 6 :v mà bạn ấn nhầm
n+5 chia hết cho n+2
=> n+2+3 chia hết cho n+2
=> n+2 chia hết cho n+2 ; 3 chia hết cho n+2
=> n+2 thuộc Ư(3)={-1,-3,1,3}
=> n={-3,-5,-1,0}
a: \(=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{2009}\left(1+2\right)\)
\(=3\left(2+2^3+...+2^{2009}\right)⋮3\)
\(A=2\left(1+2+2^2\right)+...+2^{2008}\left(1+2+2^2\right)\)
\(=7\left(2+...+2^{2008}\right)⋮7\)
b: \(=5\left(1+5\right)+5^3\left(1+5\right)+...+5^{2009}\left(1+5\right)\)
\(=6\left(5+5^3+...+5^{2009}\right)⋮6\)
a) \(5\cdot\left(\frac{x}{3}-4\right)=15\)
\(\Leftrightarrow\)\(\frac{x-12}{3}=3\)
\(\Leftrightarrow x-12=9\)
\(\Leftrightarrow x=21\)
Vạy x=21
+) 2x+3 chia hét cho x+1
Bạn chia cột dọc 2x+3 : x+1 =2 dư 1
Vậy để 2x+3 \(⋮\) x+1 thì x+1 \(\in\) Ư(1)
Mà Ư(1)={1;-1}
=> x+1={1;-1}
*)TH1: x+1=1<=>x=0
*)TH2: x+1=-1<=>x=-2
Vậy x={-2;0} thì 2x+3\(⋮\) x+1
b)Tìm GTLN của \(\frac{7}{\left(x+1\right)^2+1}\)
Vì \(\left(x+1\right)^2\ge0\) với mọi x
=>\(\left(x+1\right)^2+1\ge1\)
=> \(\frac{7}{\left(x+1\right)^2+1}\le\frac{7}{1}=7\)
1: =>3n-12+17 chia hết cho n-4
=>\(n-4\in\left\{1;-1;17;-17\right\}\)
hay \(n\in\left\{5;3;21;-13\right\}\)
2: =>6n-2+9 chia hết cho 3n-1
=>\(3n-1\in\left\{1;-1;3;-3;9;-9\right\}\)
hay \(n\in\left\{\dfrac{2}{3};0;\dfrac{4}{3};-\dfrac{2}{3};\dfrac{10}{3};-\dfrac{8}{3}\right\}\)
4: =>2n+4-11 chia hết cho n+2
=>\(n+2\in\left\{1;-1;11;-11\right\}\)
hay \(n\in\left\{-1;-3;9;-13\right\}\)
5: =>3n-4 chia hết cho n-3
=>3n-9+5 chia hết cho n-3
=>\(n-3\in\left\{1;-1;5;-5\right\}\)
hay \(n\in\left\{4;2;8;-2\right\}\)
6: =>2n+2-7 chia hết cho n+1
=>\(n+1\in\left\{1;-1;7;-7\right\}\)
hay \(n\in\left\{0;-2;6;-8\right\}\)
Ta có: \(\frac{x+3}{x-2}=1+\frac{5}{x-2}\)
Để x + 3\(⋮\)x - 2 thì x - 2 phải là ước nguyên của 5
\(\Rightarrow\)(x - 2) = (- 5; - 1; 1; 5)
\(\Rightarrow\)x = (- 3; 1; 3; 7)
Vậy giá trị x nhỏ nhất cần tìm là x = - 3
Ta có: \(n+2⋮n-2\)
\(\Rightarrow\left(n-2\right)+4⋮n-2\)
mà \(n-2⋮n-2\Rightarrow4⋮n-2\)
\(\Rightarrow n-2\inƯ\left(4\right)\)
\(\Rightarrow n-2\in\left\{\pm1;\pm2;\pm4\right\}\)
...