Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: xy=k
nên y=x/k
yz=1
nên \(\dfrac{x}{k}\cdot z=1\)
=>xz=k
Vậy: x tỉ lệ nghịch với z theo hệ số tỉ lệ k
b: xy=k
y=z
nên x/k=z
=>x=kz
Vậy: x tỉ lệ thuận với z theo hệ số tỉ lệ k
c: x=ky
nên y=x/k
yz=1
nên \(\dfrac{xz}{k}=1\)
=>xz=k
Vậy: x tỉ lệ nghịch với z theo hệ số tỉ lệ k
a) x và y tỉ lệ nghịch
=>\(x=\frac{a}{y}\) (1)
y và z tỉ lệ nghịch
=> \(y=\frac{b}{z}\) (2)
từ (1)và (2) => \(x=\frac{a}{\frac{b}{z}}=\frac{a}{b}.z\)
vậy x và y là 2 đại lượng tỉ lệ thuận theo hệ số tỉ lệ là \(\frac{a}{b}\)
b) x và y tỉ lệ nghịch
=> \(x=\frac{a}{y}\) (1)
y và z tỉ lệ thuận
=> y = bz (2)
từ (1) và (2) => \(x=\frac{a}{bz}\) hay xy=\(\frac{a}{b}\)
vậy x và z là 2 đại lượng tỉ lệ nghịch theo hệ số tỉ lệ là \(\frac{a}{b}\)
a)
Do x và y là hai đại lượng tỉ lệ nghịch
nên: x = \(\frac{a}{y}\)
Do y và z là hai đại lượng tỉ lệ nghịch
nên : y = \(\frac{b}{z}\)
=> \(x=\frac{a}{\frac{b}{z}}=\frac{a}{b}.z\)
Vậy x và z là hai đại lượng tỉ lệ thuận theo hệ số tỉ lệ là \(\frac{a}{b}\)
b)
Do x và y là hai đại lượng tỉ lệ nghịch
nên: \(x=\frac{a}{b}\)
Do y và z là hai đại lượng tỉ lệ thuận
nên : \(y=b.z\)
=> \(x=\frac{a}{b.z}\Rightarrow x=\frac{\frac{a}{b}}{z}\)
Vậy x tỉ lệ nghịch với z theo hệ số tỉ lệ là \(\frac{a}{b}\)
a,
Vì x và y tỉ lệ nghịch nên ta có:
\(x=\frac{a}{y}\)
y và z cũng tỉ lệ nghịch nên ta có:
\(y=\frac{b}{z}\)
Do đó: \(x=\frac{a}{\frac{b}{z}}=>x=\frac{az}{b}=>x=\frac{a}{b}z\)
Vậy x và z là hai đại lượng tỉ lệ thuận theo hệ số tỉ lệ \(\frac{a}{b}\)
b,
Vì x và y tỉ lệ nghịch nên ta có:
\(x=\frac{a}{y}\)
z và y tỉ lệ thuận nên ta có:
\(y=bz\)
Do đó: \(x=\frac{a}{bz}=>xbz=a=>xz=\frac{a}{b}\)
Vậy x và z là hai đại lượng tỉ lệ nghịch theo hệ số tỉ lệ \(\frac{a}{b}\)
a) Vì x và y là hai đại lượng tỉ lệ nghịch
nên : \(x=\frac{a}{y}\)
Vì y và z là hai đại lượng tỉ lệ nghịch
nên : \(y=\frac{b}{z}\)
\(\Rightarrow x=\frac{a}{\frac{b}{z}}=\frac{a}{b}.z\)
Vậy x và z là hai đại lượng tỉ lệ nghịch theo hệ số tỉ lệ là \(\frac{a}{b}\)