Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.(x+2)2-x(x+2)=0
\(\Leftrightarrow\)(x+2)(x-2-x)=0
\(\Leftrightarrow\)(x+2)*2=0
\(\Leftrightarrow\)x+2=0
\(\Leftrightarrow\)x=-2
vay s={-2}
b.\(\frac{2x+7}{3}\)-\(\frac{x-2}{4}\)=2
\(\Leftrightarrow\)\(\frac{4\left(2x+7\right)}{12}\)+\(\frac{-3\left(x-2\right)}{12}\)=\(\frac{24}{12}\)
\(\Leftrightarrow\)8x+28-3x+6=24
\(\Leftrightarrow\)5x=-10
\(\Leftrightarrow\)x=-2
vay s={-2}
c.|x+5|=3x+1
neu x+5\(\ge\)0 thi |x+5|=x+5
\(\Leftrightarrow\)x\(\ge\)-5
ta co phuong trinh
x+5=3x+1
\(\Leftrightarrow\)-2x=-4
\(\Leftrightarrow\)x=2( thoa man dieu kien x\(\ge\)-5)
neu x+5<0 thi |x+5|=5-x
\(\Leftrightarrow\)x<-5
ta co phuong trinh
5-x=3x+1
\(\Leftrightarrow\)-4x=-4
\(\Leftrightarrow\)x=1 (k thoa man dieu kien x<5)
vay s={2}
chuc bn hoc tot
a)
(x+4)(3x-5) = 0
=> x + 4 = 0 hoặc 3x-5 = 0
x = -4 x = 5/3
b)
2x2 + 7x + 3 = 0
2x2 + 6x + x + 3= 0
(2x+1)(x+3) = 0
=> 2x+1 = 0 hoặc x + 3 = 0
x = -1/2 x = -3
a, 5x(x-2) + (2-x)=0
⇔5x(x-2) - (x-2) =0
⇔(x-2)(5x-1)=0
\(\left[{}\begin{matrix}x-2=0\\5x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\frac{1}{5}\end{matrix}\right.\)
Vậy....
c, (x3 - x2) - 4x2 + 8x -4 =0
⇔x3 - x2 -4x2 + 8x - 4=0
⇔x2(x-1) - 4x(x-1) +4(x-1) =0
⇔(x-1) (x-2)2=0
⇔\(\left[{}\begin{matrix}x-1=0\\\left(x-2\right)^2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
Vậy...
Phần b cậu có chép sai đề không?
a) (2x2 - x) + 4x - 2 = 0
x(2x - 1) + 2(2x - 1) = 0
(2x - 1)(x + 2) = 0
2x - 1 = 0 hoặc x + 2 = 0
* 2x - 1 = 0
2x = 1
x = \(\frac{1}{2}\)
* x + 2 = 0
x = -2
Vậy x = -2; x = \(\frac{1}{2}\)
b) x2 - 6x + 8 = 0
x2 - 2x - 4x + 8 = 0
(x2 - 2x) + (-4x + 8) = 0
x(x - 2) - 4(x - 2) = 0
(x - 2)(x - 4) = 0
x - 2 = 0 hoặc x - 4 = 0
* x - 2 = 0
x = 2
* x - 4 = 0
x = 4
Vậy x = 2; x = 4
c) x4 - 8x2 - 9 = 0
x4 + x2 - 9x2 - 9 = 0
(x4 - 9x2) + (x2 - 9) = 0
x2(x2 - 9) + (x2 - 9) = 0
(x2 - 9)(x2 + 1) = 0
x2 - 9 = 0 (vì x2 + 1 > 0 với mọi x)
x2 = 9
x = 3 hoặc x = -3
Vậy x = 3; x = -3
Bài 1: Rút gọn
a) Ta có: \(2x\left(x-5\right)-\left(x-2\right)^2-\left(x+3\right)\left(x-3\right)\)
\(=2x^2-10x-\left(x^2-4x+4\right)-\left(x^2-9\right)\)
\(=2x^2-10x-x^2+4x-4-x^2+9\)
\(=-6x+5\)
b) Ta có: \(\left(2x-3\right)^2+3-x^2+\left(4x-6\right)\left(x-3\right)\)
\(=4x^2-12x+9+3-x^2+4x^2-12x-6x+18\)
\(=7x^2-30x+30\)
Bài 2: Tìm x
a) Ta có: \(\left(x-2\right)^2-\left(x-3\right)\left(x+3\right)=0\)
\(\Leftrightarrow x^2-4x+4-\left(x^2-9\right)=0\)
\(\Leftrightarrow x^2-4x+4-x^2+9=0\)
\(\Leftrightarrow-4x+13=0\)
\(\Leftrightarrow-4x=-13\)
hay \(x=\frac{13}{4}\)
Vậy: \(x=\frac{13}{4}\)
b) Ta có: \(\left(2x+1\right)^2+2\left(4x^2-1\right)+\left(2x-1\right)^2=0\)
\(\Leftrightarrow\left(2x+1\right)^2+2\cdot\left(2x+1\right)\cdot\left(2x-1\right)+\left(2x-1\right)^2=0\)
\(\Leftrightarrow\left(2x+1+2x-1\right)^2=0\)
\(\Leftrightarrow\left(4x\right)^2=0\)
\(\Leftrightarrow16x^2=0\)
mà 16≠0
nên \(x^2=0\)
hay x=0
Vậy: x=0
Bài 3:
Ta có: \(A=\left(3x-y\right)^2-\left(3x+y\right)^2\)
\(=\left[3x-y-\left(3x+y\right)\right]\cdot\left(3x-y+3x+y\right)\)
\(=\left(3x-y-3x-y\right)\cdot6x\)
\(=6x\cdot\left(-2y\right)=-12xy\)
Thay \(x=\frac{1}{2}\) và \(y=\frac{1}{3}\) vào biểu thức A=-12xy, ta được:
\(A=-12\cdot\frac{1}{2}\cdot\frac{1}{3}=-2\)
Vậy: -2 là giá trị của biểu thức \(A=\left(3x-y\right)^2-\left(3x+y\right)^2\) tại \(x=\frac{1}{2}\) và \(y=\frac{1}{3}\)
Bài 4: Chứng minh
a) Ta có: \(x^2-4x+5\)
\(=x^2-4x+4+1\)
\(=\left(x-2\right)^2+1\)
Ta có: \(\left(x-2\right)^2\ge0\forall x\)
\(\Rightarrow\left(x-2\right)^2+1\ge1>0\forall x\)
hay \(x^2-4x+5>0\forall x\)
- Đặt lẻ câu hỏi bạn nhớ không nên đặt quá nhiều như vậy nha
a/
\(\left(x-1\right)^2-\left(x+1\right)^2=2x-6\\ x^2-2x+1-\left(x^2+2x+1\right)=2x-6\\ \)
\(\Leftrightarrow x^2-2x+1-x^2-2x-1-2x+6=0\)
\(\Leftrightarrow6-6x=0\)
=> x=1
a) Ta có: \(a\left(m-n\right)+m-n\)
\(=a\left(m-n\right)+\left(m-n\right)\)
\(=\left(m-n\right)\left(a+1\right)\)
b) Ta có: \(mx+my+5x+5y\)
\(=m\left(x+y\right)+5\left(x+y\right)\)
\(=\left(x+y\right)\left(m+5\right)\)
c) Ta có: \(ma+mb-a-b\)
\(=m\left(a+b\right)-\left(a+b\right)\)
\(=\left(a+b\right)\left(m-1\right)\)
d) Ta có: \(1-xa-x+a\)
\(=\left(a+1\right)-x\left(a+1\right)\)
\(=\left(a+1\right)\left(1-x\right)\)
e) Ta có: \(\left(a-b\right)^2-\left(b-a\right)\left(a+b\right)\)
\(=\left(a-b\right)^2+\left(a-b\right)\left(a+b\right)\)
\(=\left(a-b\right)\left(a-b+a+b\right)\)
\(=2a\left(a-b\right)\)
f) Ta có: \(a\left(a-b\right)\left(a+b\right)-\left(a+b\right)\left(a^2-ab+b^2\right)\)
\(=\left(a+b\right)\left(a^2-ab\right)-\left(a+b\right)\left(a^2-ab+b^2\right)\)
\(=\left(a+b\right)\left(a^2-ab-a^2+ab-b^2\right)\)
\(=b^2\cdot\left(a+b\right)\)
g) Ta có: \(3x\left(x+7\right)^2-11x^2\left(x+7\right)+9\left(x+7\right)\)
\(=\left(x+7\right)\left[3x\left(x+7\right)-11x^2+9\right]\)
\(=\left(x+7\right)\left(3x^2+21x-11x^2+9\right)\)
\(=\left(x+7\right)\left(-8x^2+21x+9\right)\)
\(=\left(x+7\right)\left(-8x^2+24x-3x+9\right)\)
\(=\left(x+7\right)\left[-8x\left(x-3\right)-3\left(x-3\right)\right]\)
\(=\left(x+7\right)\left(x-3\right)\left(-8x-3\right)\)
h) Ta có: \(\left(x+5\right)^2-3\left(x+5\right)\)
\(=\left(x+5\right)\left(x+5-3\right)\)
\(=\left(x+5\right)\left(x+2\right)\)
i) Ta có: \(2x\left(x-3\right)-3\left(x-3\right)^2\)
\(=\left(x-3\right)\left[2x-3\left(x-3\right)\right]\)
\(=\left(x-3\right)\left(2x-3x+9\right)\)
\(=\left(x-3\right)\left(9-x\right)\)
j) Ta có: \(x\left(x-7\right)+\left(7-x\right)^2\)
\(=x\left(x-7\right)+\left(x-7\right)^2\)
\(=\left(x-7\right)\left(x+x-7\right)\)
\(=\left(x-7\right)\left(2x-7\right)\)
k) Ta có: \(3x\left(x-9\right)^2-\left(9-x\right)^3\)
\(=3x\left(x-9\right)^2+\left(x-9\right)^3\)
\(=\left(x-9\right)^2\cdot\left(3x+x-9\right)\)
\(=\left(x-9\right)^2\cdot\left(4x-9\right)\)
\(2x\left(x-2\right)-\left(2-x\right)^2=0\)
\(\Leftrightarrow2x\left(x-2\right)-\left(x-2\right)^2=0\)
\(\Leftrightarrow\left(x-2\right)\left[2x-\left(x-2\right)\right]=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x+2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)
Vậy : \(x\in\left\{-2,2\right\}\)