K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(2x\left(x-2\right)-\left(2-x\right)^2=0\)

\(\Leftrightarrow2x\left(x-2\right)-\left(x-2\right)^2=0\)

\(\Leftrightarrow\left(x-2\right)\left[2x-\left(x-2\right)\right]=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x+2=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)

Vậy : \(x\in\left\{-2,2\right\}\)

11 tháng 5 2019

a.(x+2)2-x(x+2)=0

\(\Leftrightarrow\)(x+2)(x-2-x)=0

\(\Leftrightarrow\)(x+2)*2=0

\(\Leftrightarrow\)x+2=0

\(\Leftrightarrow\)x=-2

vay s={-2}

b.\(\frac{2x+7}{3}\)-\(\frac{x-2}{4}\)=2

\(\Leftrightarrow\)\(\frac{4\left(2x+7\right)}{12}\)+\(\frac{-3\left(x-2\right)}{12}\)=\(\frac{24}{12}\)

\(\Leftrightarrow\)8x+28-3x+6=24

\(\Leftrightarrow\)5x=-10

\(\Leftrightarrow\)x=-2

vay s={-2}

c.|x+5|=3x+1

neu x+5\(\ge\)0 thi |x+5|=x+5

\(\Leftrightarrow\)x\(\ge\)-5

ta co phuong trinh

x+5=3x+1

\(\Leftrightarrow\)-2x=-4

\(\Leftrightarrow\)x=2( thoa man dieu kien x\(\ge\)-5)

neu x+5<0 thi |x+5|=5-x

\(\Leftrightarrow\)x<-5

ta co phuong trinh

5-x=3x+1

\(\Leftrightarrow\)-4x=-4

\(\Leftrightarrow\)x=1 (k thoa man dieu kien x<5)

vay s={2}

chuc bn hoc totbanh

11 tháng 5 2019

a, -2

b, -2

c, 2

21 tháng 10 2021

a)

(x+4)(3x-5) = 0

=> x + 4 = 0 hoặc 3x-5 = 0

     x = -4                 x = 5/3

b)

  2x2 + 7x + 3 = 0

  2x2 + 6x + x + 3= 0

  (2x+1)(x+3) = 0

=> 2x+1 = 0 hoặc x + 3 = 0

    x = -1/2              x = -3

25 tháng 9 2020

a, 5x(x-2) + (2-x)=0
⇔5x(x-2) - (x-2) =0
⇔(x-2)(5x-1)=0
\(\left[{}\begin{matrix}x-2=0\\5x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\frac{1}{5}\end{matrix}\right.\)
Vậy....
c, (x3 - x2) - 4x2 + 8x -4 =0
⇔x3 - x2 -4x2 + 8x - 4=0
⇔x2(x-1) - 4x(x-1) +4(x-1) =0
⇔(x-1) (x-2)2=0
\(\left[{}\begin{matrix}x-1=0\\\left(x-2\right)^2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
Vậy...
Phần b cậu có chép sai đề không?

25 tháng 9 2020

.chỗ đó là giải phương trình hay PTĐTTNT vậy?

2 tháng 10 2020

a) (2x2 - x) + 4x - 2 = 0

x(2x - 1) + 2(2x - 1) = 0

(2x - 1)(x + 2) = 0

2x - 1 = 0 hoặc x + 2 = 0

* 2x - 1 = 0

2x = 1

x = \(\frac{1}{2}\)

* x + 2 = 0

x = -2

Vậy x = -2; x = \(\frac{1}{2}\)

b) x2 - 6x + 8 = 0

x2 - 2x - 4x + 8 = 0

(x2 - 2x) + (-4x + 8) = 0

x(x - 2) - 4(x - 2) = 0

(x - 2)(x - 4) = 0

x - 2 = 0 hoặc x - 4 = 0

* x - 2 = 0

x = 2

* x - 4 = 0

x = 4

Vậy x = 2; x = 4

c) x4 - 8x2 - 9 = 0

x4 + x2 - 9x2 - 9 = 0

(x4 - 9x2) + (x2 - 9) = 0

x2(x2 - 9) + (x2 - 9) = 0

(x2 - 9)(x2 + 1) = 0

x2 - 9 = 0 (vì x2 + 1 > 0 với mọi x)

x2 = 9

x = 3 hoặc x = -3

Vậy x = 3; x = -3

Bài 1: Rút gọn

a) Ta có: \(2x\left(x-5\right)-\left(x-2\right)^2-\left(x+3\right)\left(x-3\right)\)

\(=2x^2-10x-\left(x^2-4x+4\right)-\left(x^2-9\right)\)

\(=2x^2-10x-x^2+4x-4-x^2+9\)

\(=-6x+5\)

b) Ta có: \(\left(2x-3\right)^2+3-x^2+\left(4x-6\right)\left(x-3\right)\)

\(=4x^2-12x+9+3-x^2+4x^2-12x-6x+18\)

\(=7x^2-30x+30\)

Bài 2: Tìm x

a) Ta có: \(\left(x-2\right)^2-\left(x-3\right)\left(x+3\right)=0\)

\(\Leftrightarrow x^2-4x+4-\left(x^2-9\right)=0\)

\(\Leftrightarrow x^2-4x+4-x^2+9=0\)

\(\Leftrightarrow-4x+13=0\)

\(\Leftrightarrow-4x=-13\)

hay \(x=\frac{13}{4}\)

Vậy: \(x=\frac{13}{4}\)

b) Ta có: \(\left(2x+1\right)^2+2\left(4x^2-1\right)+\left(2x-1\right)^2=0\)

\(\Leftrightarrow\left(2x+1\right)^2+2\cdot\left(2x+1\right)\cdot\left(2x-1\right)+\left(2x-1\right)^2=0\)

\(\Leftrightarrow\left(2x+1+2x-1\right)^2=0\)

\(\Leftrightarrow\left(4x\right)^2=0\)

\(\Leftrightarrow16x^2=0\)

mà 16≠0

nên \(x^2=0\)

hay x=0

Vậy: x=0

Bài 3:

Ta có: \(A=\left(3x-y\right)^2-\left(3x+y\right)^2\)

\(=\left[3x-y-\left(3x+y\right)\right]\cdot\left(3x-y+3x+y\right)\)

\(=\left(3x-y-3x-y\right)\cdot6x\)

\(=6x\cdot\left(-2y\right)=-12xy\)

Thay \(x=\frac{1}{2}\)\(y=\frac{1}{3}\) vào biểu thức A=-12xy, ta được:

\(A=-12\cdot\frac{1}{2}\cdot\frac{1}{3}=-2\)

Vậy: -2 là giá trị của biểu thức \(A=\left(3x-y\right)^2-\left(3x+y\right)^2\) tại \(x=\frac{1}{2}\)\(y=\frac{1}{3}\)

Bài 4: Chứng minh

a) Ta có: \(x^2-4x+5\)

\(=x^2-4x+4+1\)

\(=\left(x-2\right)^2+1\)

Ta có: \(\left(x-2\right)^2\ge0\forall x\)

\(\Rightarrow\left(x-2\right)^2+1\ge1>0\forall x\)

hay \(x^2-4x+5>0\forall x\)

27 tháng 7 2020

- Đặt lẻ câu hỏi bạn nhớ không nên đặt quá nhiều như vậy nha

23 tháng 2 2022

a/

\(\left(x-1\right)^2-\left(x+1\right)^2=2x-6\\ x^2-2x+1-\left(x^2+2x+1\right)=2x-6\\ \)

\(\Leftrightarrow x^2-2x+1-x^2-2x-1-2x+6=0\)

\(\Leftrightarrow6-6x=0\)

=> x=1

Làm có tâm ghê :)

a) Ta có: \(a\left(m-n\right)+m-n\)

\(=a\left(m-n\right)+\left(m-n\right)\)

\(=\left(m-n\right)\left(a+1\right)\)

b) Ta có: \(mx+my+5x+5y\)

\(=m\left(x+y\right)+5\left(x+y\right)\)

\(=\left(x+y\right)\left(m+5\right)\)

c) Ta có: \(ma+mb-a-b\)

\(=m\left(a+b\right)-\left(a+b\right)\)

\(=\left(a+b\right)\left(m-1\right)\)

d) Ta có: \(1-xa-x+a\)

\(=\left(a+1\right)-x\left(a+1\right)\)

\(=\left(a+1\right)\left(1-x\right)\)

e) Ta có: \(\left(a-b\right)^2-\left(b-a\right)\left(a+b\right)\)

\(=\left(a-b\right)^2+\left(a-b\right)\left(a+b\right)\)

\(=\left(a-b\right)\left(a-b+a+b\right)\)

\(=2a\left(a-b\right)\)

f) Ta có: \(a\left(a-b\right)\left(a+b\right)-\left(a+b\right)\left(a^2-ab+b^2\right)\)

\(=\left(a+b\right)\left(a^2-ab\right)-\left(a+b\right)\left(a^2-ab+b^2\right)\)

\(=\left(a+b\right)\left(a^2-ab-a^2+ab-b^2\right)\)

\(=b^2\cdot\left(a+b\right)\)

g) Ta có: \(3x\left(x+7\right)^2-11x^2\left(x+7\right)+9\left(x+7\right)\)

\(=\left(x+7\right)\left[3x\left(x+7\right)-11x^2+9\right]\)

\(=\left(x+7\right)\left(3x^2+21x-11x^2+9\right)\)

\(=\left(x+7\right)\left(-8x^2+21x+9\right)\)

\(=\left(x+7\right)\left(-8x^2+24x-3x+9\right)\)

\(=\left(x+7\right)\left[-8x\left(x-3\right)-3\left(x-3\right)\right]\)

\(=\left(x+7\right)\left(x-3\right)\left(-8x-3\right)\)

h) Ta có: \(\left(x+5\right)^2-3\left(x+5\right)\)

\(=\left(x+5\right)\left(x+5-3\right)\)

\(=\left(x+5\right)\left(x+2\right)\)

i) Ta có: \(2x\left(x-3\right)-3\left(x-3\right)^2\)

\(=\left(x-3\right)\left[2x-3\left(x-3\right)\right]\)

\(=\left(x-3\right)\left(2x-3x+9\right)\)

\(=\left(x-3\right)\left(9-x\right)\)

j) Ta có: \(x\left(x-7\right)+\left(7-x\right)^2\)

\(=x\left(x-7\right)+\left(x-7\right)^2\)

\(=\left(x-7\right)\left(x+x-7\right)\)

\(=\left(x-7\right)\left(2x-7\right)\)

k) Ta có: \(3x\left(x-9\right)^2-\left(9-x\right)^3\)

\(=3x\left(x-9\right)^2+\left(x-9\right)^3\)

\(=\left(x-9\right)^2\cdot\left(3x+x-9\right)\)

\(=\left(x-9\right)^2\cdot\left(4x-9\right)\)