Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\left(x+a\right)\left(x+2a\right)\left(x+3a\right)\left(x+4a\right)+a^4\)
\(=\left[\left(x+a\right)\left(x+4a\right)\right]\cdot\left[\left(x+2a\right)\left(x+3a\right)\right]+a^4\)
\(=\left(x^2+5ax+4a^2\right)\left(x^2+5ax+6a^2\right)+a^4\)
\(=\left(x^2+5ax+5a^2-a^2\right)\left(x^2+5ax+5a^2+a^2\right)+a^4\)\
\(=\left(x^2+5ax+5a^2\right)^2-a^4+a^4\)
\(=\left(x^2+5ax+5a^2\right)^2\)
b) Đặt \(a=x^2+y^2+z^2\); \(b=xy+yz+xz\)
\(\left(x^2+y^2+z^2\right)\left(x+y+z\right)^2+\left(xy+yz+zx\right)^2\)
\(=a\left(a+2b\right)+b^2\)
\(=a^2+2ab+b^2=\left(a+b\right)^2\)
\(=\left(x^2+y^2+z^2+xy+yz+zx\right)^2\)
a) \left(x+a\right)\left(x+2a\right)\left(x+3a\right)\left(x+4a\right)+a^4(x+a)(x+2a)(x+3a)(x+4a)+a4
=\left[\left(x+a\right)\left(x+4a\right)\right]\cdot\left[\left(x+2a\right)\left(x+3a\right)\right]+a^4=[(x+a)(x+4a)]⋅[(x+2a)(x+3a)]+a4
=\left(x^2+5ax+4a^2\right)\left(x^2+5ax+6a^2\right)+a^4=(x2+5ax+4a2)(x2+5ax+6a2)+a4
=\left(x^2+5ax+5a^2-a^2\right)\left(x^2+5ax+5a^2+a^2\right)+a^4=(x2+5ax+5a2−a2)(x2+5ax+5a2+a2)+a4\
=\left(x^2+5ax+5a^2\right)^2-a^4+a^4=(x2+5ax+5a2)2−a4+a4
=\left(x^2+5ax+5a^2\right)^2=(x2+5ax+5a2)2
b) Đặt a=x^2+y^2+z^2a=x2+y2+z2; b=xy+yz+xzb=xy+yz+xz
\left(x^2+y^2+z^2\right)\left(x+y+z\right)^2+\left(xy+yz+zx\right)^2(x2+y2+z2)(x+y+z)2+(xy+yz+zx)2
=a\left(a+2b\right)+b^2=a(a+2b)+b2
=a^2+2ab+b^2=\left(a+b\right)^2=a2+2ab+b2=(a+b)2
=\left(x^2+y^2+z^2+xy+yz+zx\right)^2=(x2+y2+z2+xy+yz+zx)2