Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Theo bài ra ta có:
\(=x^3-x-2x+2\)
\(=x\left(x^2-1\right)-2\left(x-1\right)\)
\(=x\left(x+1\right)\left(x-1\right)-2\left(x-1\right)\)
\(=\left(x-1\right)\left(x^2+x-2\right)\)
b, theo bài ra ta có:
\(=x^3-3x^2-\left(2x^2-6x\right)-\left(3x-9\right)\)
\(=x^2\left(x-3\right)-2x\left(x-3\right)-3\left(x-3\right)\)
\(=\left(x^2-2x-3\right)\left(x-3\right)\)
c,Theo bài ra ta có:
\(=x^3+5x^2+3x^2+15x+2x+10\)
\(=x^2\left(x+5\right)+3x\left(x+5\right)+2\left(x+5\right)\)
\(=\left(x+5\right)\left(x^2+3x+2\right)\)
\(=\left(x+5\right)\left(x^2+x+2x+2\right)=\left(x+5\right)\left(x\left(x+1\right)+2\left(x+1\right)\right)\)
\(=\left(x+5\right)\left(x+1\right)\left(x+2\right)\)
CHÚC BẠN HỌC TỐT...........
a) \(x^3-3x+2\)
= \(x^3-x^2+x^2-x-2x+2\)
= \(x^2\left(x-1\right)+x\left(x-1\right)-2\left(x-1\right)\)
= \(\left(x-1\right)\left(x^2+x-2\right)\)
= \(\left(x-1\right)\left(x^2+2x-x-2\right)\)
= \(\left(x-1\right)\left[x\left(x+2\right)-\left(x+2\right)\right]\)
= \(\left(x-1\right)\left(x+2\right)\left(x-1\right)\)
= \(\left(x-1\right)^2\left(x+2\right)\)
b) \(x^3-5x^2+3x+9\)
= \(x^3+x^2-6x^2-6x+9x+9\)
= \(x^2\left(x+1\right)-6x\left(x+1\right)+9\left(x+1\right)\)
= \(\left(x+1\right)\left(x^2-6x+9\right)\)
= \(\left(x+1\right)\left(x-3\right)^2\)
c) \(x^3+8x^2+17x+10\)
= \(x^3+x^2+7x^2+7x+10x+10\)
= \(x^2\left(x+1\right)+7x\left(x+1\right)+10\left(x+1\right)\)
= \(\left(x+1\right)\left(x^2+7x+10\right)\)
= \(\left(x+1\right)\left(x^2+2x+5x+10\right)\)
= \(\left(x+1\right)\left[x\left(x+2\right)+5\left(x+2\right)\right]\)
= \(\left(x+1\right)\left(x+2\right)\left(x+5\right)\)
d) \(x^3-3x^2+6x+4\)
Câu này đúng là sai đề rồi, mình sửa + làm bên dưới:
\(x^3+3x^2+6x+4\)
= \(x^3+x^2+2x^2+2x+4x+4\)
= \(x^2\left(x+1\right)+2x\left(x+1\right)+4\left(x+1\right)\)
= \(\left(x+1\right)\left(x^2+2x+4\right)\)
Học tốt nhé :))
\(\left(x+y+z\right)^2-2\left(x+y+z\right)\left(x+y\right)+\left(x+y\right)^2\)
= \(\left[\left(x+y+z\right)-\left(x+y\right)\right]^2\)
= \(z^2\)
Ta có:(x + y + z)2 - 2(x + y + z) (x + y) + (x + y)2
=[(x+y+z)-(x+y)]2=z2
Trong sách có mà bạn ( Ít nhất cũng thuộc chứ )
1. Bình phương của một tổng:
\(\left(a+b\right)^2=a^2+2ab+b^2\)
2. Bình phương của một hiệu:
\(\left(a-b\right)^2=a^2-2ab+b^2\)
3. Hiệu hai bình phương:
\(a^2-b^2=\left(a-b\right)\left(a+b\right)\)
4. Lập phương của một tổng:
\(\left(a+b\right)^3=a^3+3a^2b+3ab^2+b^3\)
5. Lập phương của một hiệu:
\(\left(a-b\right)^3=a^3-3a^2b+3ab^2-b^3\)
6. Tổng hai lập phương:
\(a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)=\left(a+b\right)^3-3a^2b-3ab^2=\left(a+b\right)^3-3ab\left(a+b\right)\)
7. Hiệu hai lập phương:
\(a^3-b^3=\left(a-b\right)\left(a^2+ab+b^2\right)=\left(a-b\right)^3+3a^2b-3ab^2=\left(a-b\right)^3+3ab\left(a-b\right)\)
Hok tốt
\(\left(a+b\right)^3+\left(b+c\right)^3+\left(a+c\right)^3-3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
\(=2a^3-6abc+2b^3+2c^3\)
a) \(x^2-6x+3\)
\(=x^2-2.x.3+9-6\)
\(=\left(x-3\right)^2-\left(\sqrt{6}\right)^2\)
\(=\left(x-3-\sqrt{6}\right)\left(x-3+\sqrt{6}\right)\)
b) \(9x^2+6x-8\)
\(=\left(3x\right)^2+2.3x+1-9\)
\(=\left(3x+1\right)^2-3^2\)
\(=\left(3x+1-3\right)\left(3x+1+3\right)\)
\(=\left(3x-2\right)\left(3x+4\right)\)
d) \(x^3+6x^2+11x+6\)
\(=x^3+3x^2+3x^2+9x+2x+6\)
\(=x^2\left(x+3\right)+3x\left(x+3\right)+2\left(x+3\right)\)
\(=\left(x+3\right)\left(x^2+3x+2\right)\)
\(=\left(x+3\right)\left(x^2+x+2x+2\right)\)
\(=\left(x+3\right)\left[x\left(x+1\right)+2\left(x+1\right)\right]\)
\(=\left(x+3\right)\left(x+1\right)\left(x+2\right)\)
e) \(x^3+4x^2-29x+24\)
\(=x^3+8x^2-4x^2-32x+3x+24\)
\(=x^2\left(x+8\right)-4x\left(x+8\right)+3\left(x+8\right)\)
\(=\left(x+8\right)\left(x^2-4x+3\right)\)
\(=\left(x+8\right)\left(x^2-3x-x+3\right)\)
\(=\left(x+8\right)\left[x\left(x-3\right)-\left(x-3\right)\right]\)
\(=\left(x+8\right)\left(x-3\right)\left(x-1\right)\)
a: \(9x^2-6x+3\)
\(=\left(9x^2-6x+1\right)+2\)
\(=\left(3x-1\right)^2+2\ge2\)
b: \(6x-x^2+1\)
\(=-\left(x^2-6x-1\right)\)
\(=-\left(x^2-6x+9-10\right)\)
\(=-\left(x-3\right)^2+10\le10\)
\(<=>2x^2-5x+3=0\)
<=>\(2x^2-2x-3x+3=0\)
\(<=>2x(x-1)-3(x-1)=0\)
\(<=>(2x-3)(x-1)=0\)
th1 \(2x-3=0<=>x=3/2\)
th2 \(X-1=0<=>x=1\)
pt có tập nghiệm S={3/2;1}
\(2x^3+3x^2-8x+3=0\\ \Rightarrow\left(2x^3-2x^2\right)+\left(5x^2-5x\right)-\left(3x-3\right)=0\\ \Rightarrow2x^2\left(x-1\right)+5x\left(x-1\right)-3\left(x-1\right)=0\\ \Rightarrow\left(x-1\right)\left(2x^2+5x-3\right)=0\\ \Rightarrow\left[{}\begin{matrix}x-1=0\\2x^2+5x-3=0\end{matrix}\right.\)
\(x-1=0\\ \Rightarrow x=1\)
\(2x^2+5x-3=0\\ \Rightarrow\left(2x^2+6x\right)-\left(x+3\right)=0\\ \Rightarrow2x\left(x+3\right)-\left(x+3\right)=0\\ \Rightarrow\left(x+3\right)\left(2x-1\right)=0\\ \Rightarrow\left[{}\begin{matrix}x+3=0\\2x-1=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=-3\\x=\dfrac{1}{2}\end{matrix}\right.\)
Vậy \(x=\left\{-3;\dfrac{1}{2};1\right\}\)