K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 12 2020

ĐK: \(x\ge\dfrac{1}{3}\)

\(2x^2+3x-4=\left(4x-3\right)\sqrt{3x-1}\)

\(\Leftrightarrow16x^2+24x-32=8\left(4x-3\right)\sqrt{3x-1}\)

\(\Leftrightarrow\left(4x-3\right)^2+16\left(3x-1\right)-8\left(4x-3\right)\sqrt{3x-1}=25\)

\(\Leftrightarrow\left(4x-3-4\sqrt{3x-1}\right)^2=25\)

\(\Leftrightarrow\left[{}\begin{matrix}4x-3-4\sqrt{3x-1}=5\\4x-3-4\sqrt{3x-1}=-5\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{3x-1}=x-2\\2\sqrt{3x-1}=2x+1\end{matrix}\right.\)

TH1: \(\sqrt{3x-1}=x-2\)

\(\Leftrightarrow\left\{{}\begin{matrix}3x-1=\left(x-2\right)^2\\x-2\ge0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2-7x+6=0\\x\ge2\end{matrix}\right.\)

\(\Leftrightarrow x=6\left(tm\right)\)

TH2: \(2\sqrt{3x-1}=2x+1\)

\(\Leftrightarrow\left\{{}\begin{matrix}4\left(3x-1\right)=\left(2x+1\right)^2\\2x+1\ge0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}4x^2-8x+5\\x\ge-\dfrac{1}{2}\end{matrix}\right.\)

\(\Rightarrow\) vô nghiệm

Vậy \(x=6\)

26 tháng 2 2020

a)Đặt \(\sqrt[3]{2x-1}=a\Rightarrow a^3+1=2x\left(1\right)\)

Phương trình trở thành: \(x^3+1=2a\left(2\right)\)

Trừ theo vế (1) và (2):

a3-x3=2(x-a)<=>(a-x)(a2+ax+x2+2)=0<=>a=x

\(\Leftrightarrow x=\sqrt[3]{2x-1}\Leftrightarrow x^3-2x+1=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\frac{-1-\sqrt{5}}{2}\\x=\frac{-1+\sqrt{5}}{2}\end{matrix}\right.\)Vậy phương trình có tập nghiệm S=\(\left\{1;\frac{-1+\sqrt{5}}{2};\frac{-1-\sqrt{5}}{2}\right\}\)

26 tháng 2 2020

b)ĐKXĐ:\(x\in R\)

pt\(\Leftrightarrow\left\{{}\begin{matrix}x^2-3x+1\le0\\\left(x^2-3x+1\right)^2=\frac{1}{3}\left(x^4+4x^2+1\right)\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\frac{3-\sqrt{5}}{2}\le x\le\frac{3+\sqrt{5}}{2}\\2x^4-18x^3+29x^2-18x+2=0\left(1\right)\end{matrix}\right.\)

Xét x=0 ko là nghiệm của pt(loại)

x khác 0.Khi đó ta chia cả hai vế của (1) cho x2 ta có:\(2x^2-18x+29-\frac{18}{x}+\frac{2}{x^2}=0\Leftrightarrow2\left(x+\frac{1}{x}\right)^2-4-18\left(x+\frac{1}{x}\right)+29=0\Leftrightarrow2\left(x+\frac{1}{x}\right)^2-18\left(x+\frac{1}{x}\right)+25=0\)

Khi đó ta sẽ tìm được các nghiệm của pt

18 tháng 4 2018

1) x-\(\sqrt{2x-5}\)=4

ĐK: \(\left\{{}\begin{matrix}2x-5\ge0\\x\ge4\end{matrix}\right.\)=> x\(\ge\)4

x-\(\sqrt{2x-5}\)=4<=> x-4=\(\sqrt{2x-5}\)

bình phương hai vế:

\(x^2-8x+16\) =2x-5

<=>\(x^2\) -10x+21=0 <=>\(\left[{}\begin{matrix}x=7\left(nhận\right)\\x=3\left(loại\right)\end{matrix}\right.\)

2) \(2x^2-3-5\sqrt{2x^2+3}=0\)(*)

ĐK:\(2x^2-3>0\Leftrightarrow x^2>\dfrac{3}{2}\)

<=>\(\left[{}\begin{matrix}x>\sqrt{\dfrac{3}{2}}\\x< -\sqrt{\dfrac{3}{2}}\end{matrix}\right.\)

(*)<=>

16 tháng 4 2018

cau 2 là bằng 0 ko phải bằng 5 nha