K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 6 2021

Ta có: \(\left(x-1\right)^{20}\ge0\forall x\)

           \(\left(y+2\right)^{30}\ge0\forall x\)

\(\Rightarrow\left(x-1\right)^{20}+\left(y+2\right)^{30}\ge0\)

Mà \(\left(x-1\right)^{20}+\left(y+2\right)^{30}=0\)

\(\Rightarrow\left(x-1\right)^{20}=\left(y+2\right)^{30}=0\)

\(\Rightarrow x-1=y+2=0\)

\(\Rightarrow\hept{\begin{cases}x=1\\y=-2\end{cases}}\)

Thay x = 1 và y = -2 vào biểu thức A ta được:

\(A=2.1^5-5.\left(-2\right)^3+4=-76\)

Vậy A = -76 tại x = 1 và y = -2.

9 tháng 6 2021

Ta có : \(\hept{\begin{cases}\left(x-1\right)^{20}\ge0\forall x\\\left(y+2\right)^{30}\ge0\forall y\end{cases}}\Rightarrow\left(x-1\right)^{20}+\left(y+2\right)^{30}\ge0\forall x;y\)

Dựa vào đề bài ta có \(\hept{\begin{cases}x-1=0\\y+2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=-2\end{cases}}\)

Khi đó A = 2.15 - 5.(-2)3 + 4 = 2 + 40 + 4 = 46

23 tháng 12 2016

Ta có:

\(\left|x-1\right|+\left(y+2\right)^{20}=0\)

\(\Rightarrow\left|x-1\right|=0\)\(\left(y+2\right)^{20}=0\)

+) \(\left|x-1\right|=0\Rightarrow x-1=0\Rightarrow x=1\)

+) \(\left(y+2\right)^{20}=0\Rightarrow y+2=0\Rightarrow y=-2\)

\(\Rightarrow C=2x^5-5y^3+2015\)

\(=2.1^5-5.\left(-2\right)^3+2015\)

\(=2-\left(-40\right)+2015\)

\(=2057\)

Vậy C = 2057

23 tháng 12 2016

Cảm ơn bạn nhiều lắm vui

18 tháng 3 2018

Ta có: \(\left(x-1\right)^{20}+\left(y+2\right)^{30}=0\)

\(\Leftrightarrow\left[\left(x-1\right)^{10}\right]^2+\left[\left(y+2\right)^{15}\right]^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-1\right)^{10}=0\\\left(y+2\right)^{15}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-1=0\\y+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\)

Thay x=1, y = -2 vào biểu thức A ta được A= 38

19 tháng 3 2018

Ta có \(\left(x-1\right)^{20}\ge0\);\(\left(y+2\right)^{30}\ge0\)

\(\Rightarrow\left(x-1\right)^{20}+\left(y+2\right)^{30}\ge0\)

\(\left(x-1\right)^{20}+\left(y+2\right)^{30}=0\)

\(\Rightarrow\left\{{}\begin{matrix}\left(x-1\right)^{20}=0\\\left(y+2\right)^{30}=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x-1=0\\y+2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\)

Thay vào ta có \(A=2.1^5-5.\left(-2\right)^3-4=2+40-4=38\)

14 tháng 2 2018

Vì \(\left|x-1\right|\ge0\) và \(\left(y+2\right)^{20}\ge0\) nên \(\left|x-1\right|+\left(y+2\right)^{20}\ge0\)

Mà \(\left|x-1\right|+\left(y+2\right)^{20}=0\) ( đề bài cho )

\(\Rightarrow\)\(\left|x-1\right|=\left(y+2\right)^{20}=0\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}\left|x-1\right|=0\\\left(y+2\right)^{20}=0\end{cases}}\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}x-1=0\\y+2=0\end{cases}}\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}x=1\\y=-2\end{cases}}\)

Thay \(x=1;y=-2\) vàp biểu thức \(2x^2-5y^3+2015\) ta được : 

\(2.1^2-5.\left(-2\right)^3+2015=2.1-5.\left(-8\right)+2015=2-\left(-40\right)+2015=42+2015=2057\)

18 tháng 3 2018

a)\(A=x^5-2018x^4+2018x^3-2018x^2+2018x-2019\)

\(A=x^5-\left(x+1\right)x^4+\left(x+1\right)x^3-\left(x+1\right)x^2+\left(x+1\right)x-2019\)

\(A=x^5-x^5-x^4+x^4+x^3-x^3-x^2+x^2+x-2019\)

\(A=x-2019=2017-2019=-2\)

b)ta có:\(\left(x+1\right)^{20}+\left(y+2\right)^{30}=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=-2\end{matrix}\right.\)

Thay vào \(\Rightarrow B=2\cdot\left(-1\right)^5+5\cdot\left(-2\right)^3+4\)

\(B=-2+\left(-40\right)+4=-38\)

18 tháng 3 2018

thục hiền đc đó thục hiền ak nay vẫn hoc24 bình thường à hiha

30 tháng 1 2017

Ta có: \(\left|x-1\right|+\left(y+20\right)^{20}=0\)

\(\Rightarrow\left\{\begin{matrix}\left|x-1\right|=0\\\left(y+20\right)^{20}=0\end{matrix}\right.\Rightarrow\left\{\begin{matrix}x-1=0\\y+20=0\end{matrix}\right.\Rightarrow\left\{\begin{matrix}x=1\\y=-20\end{matrix}\right.\)

Thay x, y vào C ta có:

\(C=2.1^5-5.\left(-20\right)^3+2017\)

\(=2+40000+2017\)

\(=42019\)

Vậy C = 42019

31 tháng 1 2017

Làm thiếu rồi bước đầu cần phải chứng minh | x - 1| > 0 và (y + 20)^20 > 0

=> | x - 1| + (y + 20)^20 > 0

Rồi mới làm tiếp như rứa

1 tháng 3 2020

Vì |2x-y| \(\ge0\)\(\forall x,y\)

\(\left(y+2\right)^{2018}\ge0\forall y\)

\(\Rightarrow\left|2x-y\right|+\left(y+2\right)^{2018}\ge0\)

Dấu = xảy ra

\(\Leftrightarrow\hept{\begin{cases}2x-y=0\\y+2=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=-1\\y=-2\end{cases}}\)(Thay vào C ta đc )

\(C=2\cdot\left(-1\right)^{2019}-5\left(-2\right)^3+2019\)=2057

Vậy .......

1 tháng 3 2020

Vì /2x-y/ \(\ge\)0 với mọi x,y,

(y + 2)2018\(\ge\)0 với mọi y

suy ra \(|2x-y|\)+ (y + 2)2018\(\ge\)0 với mọi x,y   (1)

mà suy ra \(|2x-y|\)+ (y + 2)2018​ =0    (2)

Từ (1) và (2) suy ra \(|2x-y|\)=0 và (y + 2)2018​ = 0

suy ra 2x=y và y=-2

suy ra x=-1 và y=-2

Như vậy C= 2. ( -1)2019 - 5 (-2) 3 + 2019 = -2 +40 + 2019 = 2057