Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trong đây có câu giống hệt: print - Thư viện Đề thi & Kiểm tra
Ở bài 17 í
a)Q(x) = 6x^3 - x^2 +1 -2x^3 +3x^4 -4x^3 -2x^4 +4x^2
\(=\left(3x^4-2x^4\right)+\left(6x^3-2x^3-4x^3\right)+\left(4x^2-x^2\right)+1\)
\(Q\left(x\right)=x^4+3x^2+1\)
b) \(Q\left(3\right)=3^4+3.3^2+1=81+27+1=109\)
\(Q\left(-3\right)=\left(-3\right)^4+3.\left(-3\right)^2+1=81+27+1=109\)
ở đây:
Cho đa thức Q(x) = 6x3 - x2 +1 -2x3 +3x4 -4x3 -2x4 +4x2
a) Thu gọn và sắp xếp các hạng tử của đa thức Q(x) theo lũy thừa giảm dần của biến
b) Tính Q(3) ; Q(-3)
LIKE~~~~
Do \(2A+B=5x^2+y^2+1>0\) nên \(A,B\) không cùng đồng thời nhận giá trị âm được!
Theo t/c dãy tỉ số=nhau:
\(\frac{x^3+y^3}{6}=\frac{x^3-2y^3}{4}=\frac{2x^3+2y^3}{12}=\frac{2x^3+2y^3+x^3-2y^3}{12+4}=\frac{3x^3}{16}\) (hơi tắt tí)
và \(\frac{x^3+y^3}{6}=\frac{x^3-2y^3}{4}=\frac{x^3+y^3-\left(x^3-2y^3\right)^{ }}{6-4}=\frac{3y^3}{2}\)
Do đó \(\frac{3x^3}{16}=\frac{3y^3}{4}=>\frac{x^3}{8}=y^3=>\frac{x^6}{64}=y^6\)
\(=>\left(\frac{x^6}{64}\right).y^6=y^6.y^6=>\frac{x^6.y^6}{64}=y^{12}=\frac{64}{64}=1\)
=>y=1 hoặc y=-1
x=2 hoặc x=-2
Vậy....................
bạn ơi cho mik hs tại s ở trên là 3y^3/2 mak s ở dưới là 3x^3/16 = 3y^3/4 ?
n6 - n4 + 2n3 + 2n2
= n2 . (n4 - n2 + 2n +2)
= n2 . [n2(n - 1)(n + 1) + 2(n + 1)]
= n2 . [(n + 1)(n3 - n2 + 2)]
= n2 . (n + 1) . [(n3 + 1) - (n2 - 1)]
= n2. (n + 1)2 . (n2 - 2n + 2)
Với n ∈ N, n > 1 thì n2 - 2n + 2 = (n - 1)2 + 1 > (n - 1)2
Và n2 - 2n + 2 = n2 - 2(n - 1) < n2
Vậy (n - 1)2 < n2 - 2n + 2 < n2
=> n2 - 2n + 2 không phải là một số chính phương.
Câu 1.
a). 2A = 8 + 2 3 + 2 4 + . . . + 2 21.
=> 2A – A = 2 21 +8 – ( 4 + 2 2 ) + (2 3 – 2 3) +. . . + (2 20 – 2 20). = 2 21.
b). (x + 1) + ( x + 2 ) + . . . . . . . . + (x + 100) = 5750
=> x + 1 + x + 2 + x + 3 + . . . . . . .. . .. . . . + x + 100 = 5750
=> ( 1 + 2 + 3 + . . . + 100) + ( x + x + x . . . . . . . + x ) = 5750
=> 101 . 50 + 100 x = 5750
100 x + 5050 = 5750
100 x = 5750 – 5050
100 x = 700
x = 7
101 . 50 + 100 x = 5750
100 x + 5050 = 5750
100 x = 5750 – 5050
100 x = 700
x = 7
Câu 1. a). 2A = 8 + 2 3 + 2 4 + . . . + 2 21.
=> 2A – A = 2 21 +8 – ( 4 + 2 2 ) + (2 3 – 2 3) +. . . + (2 20 – 2 20). = 2 21.
b). (x + 1) + ( x + 2 ) + . . . . . . . . + (x + 100) = 5750
=> x + 1 + x + 2 + x + 3 + . . . . . . .. . .. . . . + x + 100 = 5750
=> ( 1 + 2 + 3 + . . . + 100) + ( x + x + x . . . . . . . + x ) = 5750
=> 101 . 50 + 100 x = 5750
100 x + 5050 = 5750
100 x = 5750 – 5050
100 x = 700
x = 7
\(\left(2x-3\right)^{21}=\left(2x-3\right)^6\)
\(\Leftrightarrow\left(2x-3\right)^6.\left(2x-3\right)^{15}-\left(2x-3\right)^6=0\)
\(\Leftrightarrow\left(2x-3\right)^6\left[\left(2x-3\right)^{15}-1\right]=0\)
\(TH1:\left(2x-3\right)^6=0\)
\(\Leftrightarrow2x-3=0\)
<=> \(2x=3\)
<=> \(x=\frac{3}{2}\)
TH2: \(\left(2x-3\right)^{15}-1=0\)
\(\Leftrightarrow\left(2x-3\right)^{15}=1\)
<=> \(2x-3=1\)
<=> 2x=4
<=> x=2