Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a.
Gọi ptđt $BC$ có dạng: $y=ax+b$.
Ta có: \(\left\{\begin{matrix} -1=a(-1)+b\\ 9=4a+b\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} a=2\\ b=1\end{matrix}\right.\)
Vậy ptđt $BC$ có dạng $y=2x+1$
b. Gọi giao của $2x-y-1=0$ và $x-2y+8=0$ là $I(x_0,y_0)$
Ta có:
\(\left\{\begin{matrix} 3x_0-y_0-1=0\\ x_0-2y_0+8=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x_0=2\\ y_0=5\end{matrix}\right.\)
Thay kết quả này vô ptđt $BC$ ta thấy:
$2x_0+1=2.2+1=5=y_0$ nên $I(x_0,y_0)\in BC$
Vậy 3 đt đồng quy (đpcm)
Michael Channel: này là giải hệ 2 ẩn rất quen thuộc ở lớp 9 mà em
\(\left\{{}\begin{matrix}-a+b=-1\\4a+b=9\end{matrix}\right.\Rightarrow\left(4a+b\right)-\left(-a+b\right)=9-\left(-1\right)\)
\(\Leftrightarrow5a=10\Leftrightarrow a=2\)
Lời giải:
a. Gọi ptdt $(d)$ đi qua $A,B$ là $y=ax+b$
Ta có: \(\left\{\begin{matrix} y_A=ax_A+b\\ y_B=ax_B+b\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} 2=a+b\\ 1=a.0+b\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} b=1\\ a=1\end{matrix}\right.\)
Vậy ptđt $(d)$ là: $y=x+1$
b. Ta thấy: $y_C=-4=-5+1=x_C+1$ nên $C\in (d): y=x+1$
Tức là $C$ thuộc đt đi qua 2 điểm $A,B$
$\Rightarrow A,B,C$ thẳng hàng.
a) Pt đường thẳng BC có dạng: $y=ax+b (a\ne0)$
*Đường thẳng BC qua $B(-1;5) \Rightarrow -1a+b=5(1)$
*Đường thẳng BC qua $C(3;-3) \Rightarrow 3a+b=-3(2)$
Từ (1) và (2) \(\Rightarrow\left\{{}\begin{matrix}-a+b=5\\3a+b=-3\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=-2\\b=3\end{matrix}\right.\)
b) Thay $A(2;-1)$ và đường thẳng $BC=y=-2x+3$
\(\Rightarrow-1=-2.2+3\\ \Leftrightarrow-1=-1\left(Đ\right)\)
$\Rightarrow$ \(A\in\) đường thẳng BC
Vậy 3 điểm $A,B,C$ thẳng hàng
\(A\left(2;-1\right)\)
\(B\left(-1;5\right)\)
\(C\left(3;-3\right)\)
a) Gọi pt đường thẳng BC là: y = ax +b
đường thẳng BC qua 2 điểm B(-1 ; 5) và C ( 3 ; -3) nên ta có:
\(\left\{{}\begin{matrix}5=-a+b\\-3=3a+b\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=-2\\b=3\end{matrix}\right.\)
=> pt đường thẳng BC là: y = -2x + 3
b) Gọi pt đường thẳng AC là: (d): y = ax + b (1)
Vì đường thẳng AC qua 2 điểm A ( 2;-1) và C ( 3;-3) nên ta có:
\(\left\{{}\begin{matrix}-1=2a+b\\-3=3a+b\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=-2\\b=3\end{matrix}\right.\)
=> pt đường thẳng AC là: (d1): y = -2x + 3 (2)
Từ (1) và (2) suy ra : (d) \(\equiv\) (d1)
=> A, B, C thẳng hàng
Doanh ơi, không làm CTV nữa à???
Không có vợ chắc t bỏ hoc24 đây :''>
a) Do BE và CF là các đường cao trong tam giác ABC nên ˆBEC=90∘, ˆBFC=90∘
Tứ giác BCEF có góc E và góc F cùng nhìn cạnh BC và bằng nhau (cùng bằng 90∘) nên là tứ giác nội tiếp.
b) Tứ giác BCEF là tứ giác nội tiếp nên ˆAFE=ˆACB, mà ˆACB=ˆASB (cùng chắn cung AB) nên ˆAFE=ˆASB
Suy ra tứ giác BFMS là tứ giác nội tiếp.
Do đó ˆFMS=180∘−ˆFBS=90∘.. Vậy OA ⊥⊥ EF.
c)
+) Tứ giác BCEF nội tiếp nên ˆAEF=ˆABC (1)
Từ OA ⊥ PE suy ra ˆAIB=ˆAPE(cùng phụ với ˆMAP). (2)
Từ (1) và (2) suy ra ΔAPE∽ΔABI (g.g).
+) Tứ giác BHCS có BH // CS (cùng vuông góc với AS) và BS // CH (cùng vuông góc với AB) nên là hình bình hành. Do đó ba điểm H, K, S thẳng hàng.
Ta sẽ chứng minh hai góc đồng vị ˆPIM và HSM^ bằng nhau.
Tứ giác PDIM nội tiếp (vì có hai góc vuông M và D đối nhau) nên ˆPIM=ˆPDM (3)
Ta có:
ΔAHE∽ΔACDΔ nên AH.AD = AE.AC.
ΔAME∽ΔACSnên AM.AS = AE.AC.
Suy ra AH.AD = AM.AS ⇒AH/AM=AS/AD.
Do đó ΔMAH∽ΔDAS(c.g.c). Suy ra AHM^=ASD^.
Từ đó ta có tứ giác DHMS là tứ giác nội tiếp. Suy ra ˆHDM=ˆHSM. (4)
Từ (3) và (4) suy ra HS // PI, hay KH // PI.
a: Gọi (d): y=ax+b là phương trình đường thẳng BC
Theo đề, ta có hệ phương trình:
\(\left\{{}\begin{matrix}-a+b=-1\\4a+b=9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=1\end{matrix}\right.\)
Vậy: y=2x+1
b: Khi y=3 thì x+6=7
=>x=1
Thay x=1 và y=3 vào y=2x+1, ta được:
\(2\cdot1+1=3\)(đúng)
=>Ba đường đồng quy
c: \(\overrightarrow{AB}=\left(-3;-6\right)\)
\(\overrightarrow{BC}=\left(5;10\right)\)
Vì \(\dfrac{-3}{5}=\dfrac{-6}{10}\)
nên A,B,C thẳng hàng