Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) A = 2 + 2^2 + ... + 2^58 + 2^59 + 2^60
A = 2 ( 2 + 1 ) + 2^3 ( 2 + 1 ) + ... + 2^59 ( 2 + 1)
A = 3 .2 + 3.2^3 + ... + 3.2^59
A = 3 ( 2 + 2^3 + ... + 2^59 ) luôn chia hết cho 3
Ta có A = 2+22 + 23 + .....+ 259 + 260
= ( 2+ 22 + 23) +....+ (258 + 259 + 260)
= 2(1+2+4) +....+ 258( 1+2+4)
= 2 .7+24.7 +....+ 258 . 7
= 7( 2+24 + ....+ 258)
=> A chia hết cho 7
Ta có: 2 + 22 + 23 + 24 + ... + 260
= ( 2 + 22 + 23 + 24) + ( 25+ 26 + 27 + 28) + ... + (257 + 258 + 259 + 260)
= 2 ( 1 + 2 + 22 + 23) + 25( 1 + 2 + 22 + 23) + ... + 257( 1 + 2 + 22 + 23)
= 2 . 15 + 25.15 + ... + 257 . 15 = 15 ( 2 + 25 + ... + 257) chia hết cho 3.
Nhớ tick mình đúng nhé!
2+22+23+...+260
=(2+22)+(23+24)+...+(259+260)
=2(1+2)+23.(1+2)+...+259(1+2)
=2.3+23.3+...+259.3
=3(2+23+...+259) chia hết cho 3
=>2+22+23+24+...........+259+260 chia hết cho 3
Bạn ơi, sao 23 + 25 mà lại tới 260?
\(1+4+4^2+4^3+...+4^{59}\)
\(=\left(1+4\right)+\left(4^2+4^3\right)+...+\left(4^{58}+4^{59}\right)\)
\(=\left(1+4\right)+4^2.\left(1+4\right)+...+4^{58}.\left(1+4\right)\)
\(=5+4^2.5+...+4^{58}.5\)
\(=5.\left(1+4^2+...+4^{58}\right)⋮5\)
\(\Rightarrow1+4+4^2+4^3+...+4^{59}⋮5\)
\(1+4+4^2+4^3+...+4^{59}\)
\(=\left(1+4+4^2\right)+\left(4^3+4^4+4^5\right)+...+\left(4^{57}+4^{58}+4^{59}\right)\)
\(=\left(1+4+4^2\right)+4^3.\left(1+4+4^2\right)+...+4^{57}.\left(1+4+4^2\right)\)
\(=21+4^3.21+...+4^{57}.21\)
\(=21.\left(1+4^3+...+4^{57}\right)⋮21\)
\(\Rightarrow1+4+4^2+4^3+...+4^{59}⋮21\)
\(1+4+4^2+4^3+...+4^{59}\)
\(=\left(1+4+4^2+4^3\right)+...+\left(4^{56}+4^{57}+4^{58}+4^{59}\right)\)
\(=\left(1+4+4^2+4^3\right)+...+4^{56}.\left(1+4+4^2+4^3\right)\)
\(=85+...+4^{56}.85\)
\(=85.\left(1+...+4^{56}\right)\)
Đặt \(A=2+2^2+2^3+2^4+....+2^{59}+2^{60}\)
\(\Leftrightarrow A=\left(2+2^2\right)+\left(2^3+2^4\right)+.....+\left(2^{59}+2^{60}\right)\)
\(\Leftrightarrow A=2\left(1+2\right)+2^3\left(1+2\right)+....+2^{59}\left(1+2\right)\)
\(\Leftrightarrow A=2\cdot3+2^3\cdot3+....+2^{59}\cdot3\)
\(\Leftrightarrow A=3\cdot\left(2+2^3+....+2^{59}\right)\)
Vậy A chia hết cho 3 (đpcm)
*) Chứng mình A \(⋮\)3
Ta có : A= ( 21 + 22 ) + ( 23 + 24 ) + .... + ( 259 + 260)
= 2. ( 1 + 2 ) + 23 . ( 1 + 2) + ... + 259 . ( 1+ 2)
= 2 . 3 + 23 . 3 + .....+ 259 . 3
= 3. (2 + 23 + .... + 259 ) \(⋮\)3
Vậy A \(⋮\)3 => đpcm
21+22+23+..............+259+260
=(2+22+23)+..............+(258+259+260)
=2.(1+2+22)+.................+258.(1+2+22)
=2.7+............+258.7
=(2+24+.............+258).7 chia hết cho 7
21+22+23+..............+259+260
=(2+22+23)+..............+(258+259+260)
=2.(1+2+22)+.................+258.(1+2+22)
=2.7+............+258.7
=(2+24+.............+258).7 chia hết cho 7
2A=22+23+24+25+.............+260+261
2A-A=(22+23+24+25+..............+260+261)-(2+22+23+24+............+259+260)
A=261-2
S=(2+22+23+24)+(25+26+27+28)+...+(257+258+259+260)
S=2(1+2+22+23)+25(1+2+22+23)+...+257(1+2+22+23+24)
S=2.15+25.15+...+257.15
S=15(2+25+...+257) chia hết cho 15
Vậy S chia hết chi 15
tich ủng hộ cái nha!!!
Đặt : \(A=2+2^2+2^3+2^4+...+2^{59}+2^{60}\)
\(=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{59}+2^{60}\right)\)
\(=2.\left(1+2\right)+2^3.\left(1+2\right)+....+2^{59}.\left(1+2\right)\)
\(=2.3+2^3.3+...+2^{59}.3\)
\(=3.\left(2+2^3+....+2^{59}\right)\) chia hết cho 3 .
Vậy \(2+2^2+2^3+2^4+...+2^{59}+2^{60}\) chia hết cho 3 .