Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(A=\dfrac{1}{101}+\dfrac{1}{102}+\dfrac{1}{103}+...+\dfrac{1}{200}\)
Ta có:
\(\dfrac{1}{101}>\dfrac{1}{200}\)
\(\dfrac{1}{102}>\dfrac{1}{200}\)
\(\dfrac{1}{103}>\dfrac{1}{200}\)
...
\(\dfrac{1}{199}>\dfrac{1}{200}\)
\(\Rightarrow A=\dfrac{1}{101}+\dfrac{1}{102}+\dfrac{1}{103}+...+\dfrac{1}{200}>\dfrac{1}{200}+\dfrac{1}{200}+\dfrac{1}{200}+...+\dfrac{1}{200}\)
\(=\dfrac{1}{200}.100\)
\(=\dfrac{1}{2}\)
Mà \(\dfrac{1}{2}< 1\)
\(\Rightarrow\dfrac{1}{101}+\dfrac{1}{102}+\dfrac{1}{103}+...+\dfrac{1}{200}< 1\).
Tính bằng cách hợp lí
H=7/4x(3333/1212+3333/2020+3333/3030+3333/4242)
mình đang cần gấp, giải nhanh hộ
\(H=\frac{7}{4}.\left(\frac{3333}{1212}+\frac{3333}{2020}+\frac{3333}{3030}+\frac{3333}{4242}\right)\)
\(H=\frac{7}{4}.3333.\left(\frac{1}{1212}+\frac{1}{2020}+\frac{1}{3030}+\frac{1}{4242}\right)\)
\(H=\frac{7}{4}.3333.\left(\frac{1}{12.101}+\frac{1}{20.101}+\frac{1}{30.101}+\frac{1}{42.101}\right)\)
\(H=\frac{7}{4}.3333.\frac{1}{101}.\left(\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}\right)\)
\(H=\frac{7}{4}.33.\left(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}\right)\)
\(H=\frac{7}{4}.33.\left(\frac{1}{3}-\frac{1}{7}\right)\)
\(H=\frac{7}{4}.33.\left(\frac{7}{21}-\frac{3}{21}\right)\)
\(H=33.\frac{7}{4}.\frac{4}{21}\)
\(H=11.3.\frac{1}{3}\)
\(H=11\)
Tham khảo nhé~
\(H=\frac{7}{4}.\left(\frac{3333}{1212}+\frac{3333}{2020}+\frac{3333}{3030}+\frac{3333}{4242}\right)\))
\(H=\frac{7}{4}.\left(\frac{33.101}{12.101}+\frac{33.101}{20.101}+\frac{33.101}{30.101}+\frac{33.101}{42.101}\right)\)
\(H=\frac{7}{4}.\left(\frac{33}{12}+\frac{33}{20}+\frac{33}{30}+\frac{33}{42}\right)\)
\(H=\frac{7}{4}.33.\left(\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}\right)\)
\(H=\frac{231}{4}.\left(\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}\right)\)
\(H=\frac{231}{4}.\left(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}\right)\)
\(H=\frac{231}{4}.\left(\frac{1}{3}-\frac{1}{7}\right)\)
\(H=\frac{231}{4}.\frac{4}{21}\)
\(H=11\)
A=|x-3|+2020
|x-3|≥0 với mọi x=> dấu ''='' xẩy ra khi x=3
Vậy Min A là 2020
B=(x+2)²-2019
(x-2)²≥0 với mọi x=> dấu ''='' xẩy ra khi x=2
Vậy Min B =-2019