K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 7 2018

\(2007⋮3\Rightarrow2007^4⋮3\)

\(2010⋮3\Rightarrow2010^7⋮3\)

\(\Rightarrow2007^4+2010^7⋮3\)

\(\Rightarrow2007^4+2010^7\)là hợp số

Vậy \(2007^4+2010^7\)là hợp số.

18 tháng 7 2018

là nguyên tố

18 tháng 7 2018

bn có thể giải thích cặn cẽ được ko 

2 tháng 9 2017

a ) Ta thấy mỗi thừa số của tổng đều chia hết cho 5 nên tổng \(5+5^2+5^3+5^4+5^5\) chia hết cho 5 hay tổng đó là hợp số 

b) Ta thấy 2007 chia hết cho 3 nên \(2007^2\)chia hết cho 3 , 2010 chia hết cho 3 nên \(2010^4\)chia hết cho 3 . Khi đó \(2007^2+2010^4\)chia hết cho 3 hay tổng đó là hợp số 

c) ko rõ nên mình ko làm 

d ) Ta có \(7.8.9.10-2.3.4.5=7.8.3.3.2.5-2.3.4.5=7.8.3.2.\left(3.5\right)-\left(2.4\right).\left(3.5\right)\)

\(=7.8.2.3.15-8.15=8.15.\left(7.2.3-1\right)\)

Khi đó tích đó chia hết cho 8 và 15 hay tổng ban đầu chia hết cho 15 . Khi đó tổng là hợp số

2 tháng 9 2017

Cảm ơn bạn rất nhiều!

17 tháng 1 2016

hợp số

17 tháng 1 2016

hợp số

31 tháng 7 2016

là hợp số vì n2 và 2006 có hơn 2 ước.

31 tháng 7 2016

Ta có : n là số nguyên tố > 3 

         => n2 = không chia hết cho 3

         => n2 = 3k + 1

vậy 3k+1+2006 = 3k + 2007

   ta có: 3k chia hết cho 3

            2007 chia hết cho 3 nên n2+2006 là hợp số

  

31 tháng 1 2017

Số nguyên tố không bao gời là số chẵn ( trừ số 2 ) và lúc nào cũng là số lẻ

Số lẻ + Số lẻ = Số chẵn

=> n + 2015 là hợp số

31 tháng 1 2017

là hợp số nha!

7 tháng 1 2016

n>3 =>n=3k+1=>(3k+1)(3k+1)+2015=>9k2+3k+3k+1+2015=>3(3k2+2k)+2016=>3(3k2+2k) và 2016 cùng chia hết cho 3 nên là hợp số 

Vì vậy: n2+2015 là hợp số

7 tháng 1 2016

-Vì n là số nguyên tố lớn 3  nên n có dạng 3k+1 và 3k+2 (k\(\in\)N*)

Với n =3k+1:

n2+2015=(3k+1)2+2015

             =(3k+1).(3k+1)+2015

             =3k(3k+1)+(3k+1)+2015

             =9k2+3k+3k+1+2015

            =9k2+6k+2016

Ta có:

9k2 chia hết cho 3

6k chia hết cho 3

2016 chia hết cho 3

=> 9k2+6k+2016 chia hết cho 3

Mà 9k2+6k+2016 > 3

=> 9k2+6k+2016 là hợp số 

=>n2+2015 là hợp số (1)

Với n=3k+2:

n2+2015=(3k+2)2+2015

             =(3k+2).(3k+2)+2015

             =3k(3k+2)+2(3k+2)+2015

             =9k2+6k+6k+4+2015

            =9k2+12k+2019

Ta có:

9k2 chia hết cho 3

12k chia hết cho 3

2019 chia hết cho 3

=> 9k2+12k+2019 chia hết cho 3

Mà 9k2+12k+2019 > 3

=> 9k2+12k+2019 là hợp số

=>n2+2015 là hợp số (2)

Từ (1) và (2) suy ra : n2+2015 là hợp số

Vậy n2+2015 là hợp số

nhớ tick ủng hộ mình !

           

19 tháng 2 2018

do \(n^2+2006\)là scp nên \(n^2+2006\)có dạng \(m^2\)ta có

\(n^2+2006=m^2\)

\(\Leftrightarrow m^2-n^2=2006\)

\(\Leftrightarrow\left(m-n\right)\left(m+n\right)=2006\)

trường hợp này chỉ tìm n thôi ha.....\(\Rightarrow m-n;m+n\inƯ\left(2006\right)\)bn giải tiếp ha

b. do n là số ngto >3 nên n có dạng 3k+1 và 3k+2 .....thay vào n xong tính ta đc\(n^2+2006\)là hợp số ( cả 2 th)

2 tháng 9 2017

Mấy bài kia thì mình không biết, nhưng mình biết bài c.

c) 1.2.3.4.5....(n+1)

Vì trong tích trên có hơn 2 số hạng là chẵn nên tích trên là số chẵn khác 2, là hợp số.