Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a ) Ta thấy mỗi thừa số của tổng đều chia hết cho 5 nên tổng \(5+5^2+5^3+5^4+5^5\) chia hết cho 5 hay tổng đó là hợp số
b) Ta thấy 2007 chia hết cho 3 nên \(2007^2\)chia hết cho 3 , 2010 chia hết cho 3 nên \(2010^4\)chia hết cho 3 . Khi đó \(2007^2+2010^4\)chia hết cho 3 hay tổng đó là hợp số
c) ko rõ nên mình ko làm
d ) Ta có \(7.8.9.10-2.3.4.5=7.8.3.3.2.5-2.3.4.5=7.8.3.2.\left(3.5\right)-\left(2.4\right).\left(3.5\right)\)
\(=7.8.2.3.15-8.15=8.15.\left(7.2.3-1\right)\)
Khi đó tích đó chia hết cho 8 và 15 hay tổng ban đầu chia hết cho 15 . Khi đó tổng là hợp số
Ta có : n là số nguyên tố > 3
=> n2 = không chia hết cho 3
=> n2 = 3k + 1
vậy 3k+1+2006 = 3k + 2007
ta có: 3k chia hết cho 3
2007 chia hết cho 3 nên n2+2006 là hợp số
Số nguyên tố không bao gời là số chẵn ( trừ số 2 ) và lúc nào cũng là số lẻ
Số lẻ + Số lẻ = Số chẵn
=> n + 2015 là hợp số
n>3 =>n=3k+1=>(3k+1)(3k+1)+2015=>9k2+3k+3k+1+2015=>3(3k2+2k)+2016=>3(3k2+2k) và 2016 cùng chia hết cho 3 nên là hợp số
Vì vậy: n2+2015 là hợp số
-Vì n là số nguyên tố lớn 3 nên n có dạng 3k+1 và 3k+2 (k\(\in\)N*)
Với n =3k+1:
n2+2015=(3k+1)2+2015
=(3k+1).(3k+1)+2015
=3k(3k+1)+(3k+1)+2015
=9k2+3k+3k+1+2015
=9k2+6k+2016
Ta có:
9k2 chia hết cho 3
6k chia hết cho 3
2016 chia hết cho 3
=> 9k2+6k+2016 chia hết cho 3
Mà 9k2+6k+2016 > 3
=> 9k2+6k+2016 là hợp số
=>n2+2015 là hợp số (1)
Với n=3k+2:
n2+2015=(3k+2)2+2015
=(3k+2).(3k+2)+2015
=3k(3k+2)+2(3k+2)+2015
=9k2+6k+6k+4+2015
=9k2+12k+2019
Ta có:
9k2 chia hết cho 3
12k chia hết cho 3
2019 chia hết cho 3
=> 9k2+12k+2019 chia hết cho 3
Mà 9k2+12k+2019 > 3
=> 9k2+12k+2019 là hợp số
=>n2+2015 là hợp số (2)
Từ (1) và (2) suy ra : n2+2015 là hợp số
Vậy n2+2015 là hợp số
nhớ tick ủng hộ mình !
do \(n^2+2006\)là scp nên \(n^2+2006\)có dạng \(m^2\)ta có
\(n^2+2006=m^2\)
\(\Leftrightarrow m^2-n^2=2006\)
\(\Leftrightarrow\left(m-n\right)\left(m+n\right)=2006\)
trường hợp này chỉ tìm n thôi ha.....\(\Rightarrow m-n;m+n\inƯ\left(2006\right)\)bn giải tiếp ha
b. do n là số ngto >3 nên n có dạng 3k+1 và 3k+2 .....thay vào n xong tính ta đc\(n^2+2006\)là hợp số ( cả 2 th)
Mấy bài kia thì mình không biết, nhưng mình biết bài c.
c) 1.2.3.4.5....(n+1)
Vì trong tích trên có hơn 2 số hạng là chẵn nên tích trên là số chẵn khác 2, là hợp số.
\(2007⋮3\Rightarrow2007^4⋮3\)
\(2010⋮3\Rightarrow2010^7⋮3\)
\(\Rightarrow2007^4+2010^7⋮3\)
\(\Rightarrow2007^4+2010^7\)là hợp số
Vậy \(2007^4+2010^7\)là hợp số.