">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 8 2017
 
 
 
 

Áp dụng bất đẳng thức |m|+|n||m+n| .Dấu = xảy ra khi m,n cùng dấu

A|xa+xb|+|xc+xd|=|2xab|+|c+d2x|

|2xab2x+c+d|=|c+dab|

Dấu = xảy ra khi xa và xb cùng dấu hay(xa hoặc xb)

                        xc và xd cùng dấu hay(xc hoặc xd)

                        2xab và c+d2x cùng dấu hay (x+b2xc+d)

Vậy Min A =c+d-a-b khi bxc


 
9 tháng 8 2018

\(A=\left|x+12\right|+\left(y+2\right)^2+11\ge11\)

ta có \(\hept{\begin{cases}\left|x+12\right|\ge0\\\left(y+2\right)^2\ge0\end{cases}}\)

\(\Rightarrow\left|x+12\right|+\left(y+2\right)^2+11\ge11\)

\(\Rightarrow A_{min}=11\Leftrightarrow\hept{\begin{cases}x+12=0\\y+2=0\end{cases}\Rightarrow\hept{\begin{cases}x=-12\\y=-2\end{cases}}}\)

20 tháng 9 2016

|x - 1,3| + |2x - 1| = 0

Có |x - 1,3| \(\ge\)0

|2x - 1| \(\ge\)0

=> Để |x - 1,3| + |2x - 1| = 0

=> |x - 1,3| = 0 và |2x - 1| = 0

=> x - 1,3 = 0 và 2x - 1 = 0

=> x = 1,3 và 2x = 1

=> x = 1,3 và x = 0,5 (vô lí vì x không thể cùng lúc nhận 2 giá trị)

=> Không có giá trị của x thỏa mãn đề bài

5 tháng 9 2016

\(C=3-\frac{5}{2}\left|\frac{2}{5}-x\right|\)

Ta có: 

|2/5 - x| >/ 0 

=> 5/2 * |2/5 -x| >/ 0

=> 5/2 * |2/5 -x| -3 >/ -3

=> 3 - 5/2 * |2/5 -x|  \<  3

Vậy GTLN của C là 3. 

5 tháng 9 2016

(2/5-x)> hoặc=0

5/2(2/5-x)> hoặc =0

3-5/2(2/5-x)< hoặc =3

=> C< hoặc =3

=> Cmax=3 khi 3-5/2(2/5-x)=3

                           5/2(2/5-x)=0

                                (2/5-x)=0

                                2/5-x=0

                                      x=2/5

Vậy GTLN của C =3 khi x=2/5