K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

 

\(4x^4-4x^2+1=\left(2x^2-1\right)^2\)

\(\left(x+2y\right)^2=x^2+4xy+4y^2\)

\(36-12x+x^2=\left(6-x\right)^2\)

\(\left(x+5y\right)^2=x^2+10xy+25y^2\)

\(4x^2-12x+9=\left(2x-3\right)^2\)

\(\left(x-2y\right)^2=x^2-4xy+4y^2\)

22 tháng 6 2017

a, \(4x^2-4x+1=\left(2x-1\right)^2\)

b, \(x^2+4xy+4y^2=\left(x+2y\right)^2\)

c, \(4x^2+4xy+y^2=\left(2x+y\right)^2\)

d, \(x^2+12xy+36y^2=\left(x+6y\right)^2\)

e, \(x^2-12xy+36y^2=\left(x-6y\right)^2\)

23 tháng 6 2017

a, \(4x^2-4x+1\)

\(=4x^2-2x-2x+1=2x.\left(2x-1\right)-\left(2x-1\right)\)

\(=\left(2x-1\right)^2\)

b, \(x^2+4xy+4y^2\)

\(=x^2+2xy+2xy+4y^2\)

\(=x.\left(x+2y\right)+2y.\left(x+2y\right)\)

\(=\left(x+2y\right)^2\)

Chúc bạn học tốt!!! (bạn nhờ mình giải chi tiết bài này á)

15 tháng 8 2020

a) \(4x^2-12x+9\)

\(=\left(2x\right)^2-2.2x.3+3^2\)

\(=\left(2x-3\right)^2\)

b) \(4x^2+4x+1\)

\(=\left(2x\right)^2+2.2x.1+1^2\)

\(=\left(2x+1\right)^2\)

c) \(1+12x+36x^2\)

\(=1^2+2.1.6x+\left(6x\right)^2\)

\(=\left(1+6x\right)^2\)

d) \(9x^2-24xy+16y^2\)

\(=\left(3x\right)^2-2.3x.4y+\left(4y\right)^2\)

\(=\left(3x-4y\right)^2\)

e) \(\frac{x^2}{4}+2xy+4y^2\)

\(=\left(\frac{x}{2}\right)^2+2.\frac{x}{2}.2y+\left(2y\right)^2\)

\(=\left(\frac{x}{2}+2y\right)^2\)

f) \(-x^2+10x-25\)

\(=-\left(x^2-10x+25\right)\)

\(=-\left(x^2-2.5x+5^2\right)\)

\(=-\left(x-5\right)^2\)

g) \(-16a^4b^6-24a^5b^5-9a^6b^4\)

\(=-a^4b^4\left(16b^2+24ab+9a^2\right)\)

\(=-a^4b^4\left[\left(4b\right)^2+2.4b.3a+\left(3a\right)^2\right]\)

\(=-a^4b^4\left(4b+3a\right)^2\)

h) \(25x^2-20xy+4y^2\)

\(=\left(5x\right)^2-2.5x.2y+\left(2y\right)^2\)

\(=\left(5x-2y\right)^2\)

i) \(25x^4-10x^2y+y^2\)

\(=\left(5x^2\right)^2-2.5x^2y+y^2\)

\(=\left(5x^2-y\right)^2\)

18 tháng 6 2016

a) = (x + 3)2 - y2 = (x + 3 - y)(x + 3 + y)

b) = x2(x - 3) -4(x - 3) = (x - 3)(x2 - 4) = (x - 3)(x - 2)(x + 2)

c) = 3x(x - y) - 5(x - y) = (x - y)(3x - y)

d) Nhầm đề. tui sửa lại x3 + y3 + 2x2 - 2xy + 2y2

= x3 + y3 + 2(x2 - xy + y2) = (x + y)(x2 - xy + y2) + 2(x2 - xy + y2) = (x2 - xy + y2)(x + y + 2)

e) = x4 - x3 - x3 + x2 - x2 + x + x - 1 = x3(x - 1) - x2(x - 1) - x(x - 1) + x - 1 = (x - 1)(x3 - x2 - x + 1) = (x - 1)(x - 1)(x2 - 1) = (x - 1)3(x + 1)

f) = x3 - 3x2 - x2 + 3x + 9x - 27 = x2(x - 3) - x(x - 3) + 9(x - 3) = (x-3)(x2 - x + 9)

g) chắc là 3xyz 

= x2y + xy2 + y2z + yz2 + x2z + xz2 + 3xyz = x2y + xy2 + xyz + y2z + yz2 + xyz + x2z + xz2 + xyz = (x + y + z)(xy + yz + xz)

h) = 23 -(3x)3 = (2 - 3x)(4 + 6x + 9x2)

i) = (x + y - x + y)(x + y + x - y) = 2y*2x = 4xy

k) = (x3 - y3)(x3 + y3) = (x - y)(x2 + xy +y2)(x + y)(x2 - xy +y2).

30 tháng 6 2017

toàn hằng đẳng thức (1) và (2) thôi mà bạn, đọc SGK 8 tập 1 là hiểu ngay. Có gì khó hiểu hỏi nhé!

30 tháng 6 2017

a, x2-6x +9 = (x-3)2

b, 4x2+4x +1 = (2x)2+2.2x.1 +12=(2x+1)2

c, 9x2 -12x +4 = (3x-2)2

d, 25x2 -10x +1= (5x -1)2

e, x4-4x2+4 = (x2 -2)2

f, x2 +8x +16 = (x+4)2

30 tháng 7 2020

a) \(4x^2-12x+9\)

\(=\left(2x\right)^2-2.2.3+3^2\)

\(=\left(2x-3\right)^2\)

b) \(4x^2+4x+1\)

\(=\left(2x\right)^2+2.2x.1+1^2\)

\(=\left(2x+1\right)^2\)

c) \(1+12x+36x^2\)

\(=1^2+2.6x+\left(6x\right)^2\)

\(=\left(1+6x\right)^2\)

d) \(9x^2-24xy+16y^2\)

\(=\left(3x\right)^2-2.3x.4y+\left(4y\right)^2\)

\(=\left(3x-4y\right)^2\)

e) Viết = công thức trực quan hộ mình

f) \(-x^2+10x-25\)

\(=-\left(x^2-10x+25\right)\)

\(=-\left(x^2-2.5x+5^2\right)\)

\(=-\left(x-5\right)^2\)

2 tháng 8 2020

chữ mình nó không được đẹp cho lắm, thông cảm

2 tháng 8 2020
https://i.imgur.com/tmaToim.png
13 tháng 8 2018

\(A=x^2-10x+3=\left(x^2-10x+25\right)-22=\left(x-5\right)^2-22\ge-22\)

Vậy GTNN của A là -22 khi x = 5

\(B=x^2+6x-5=\left(x^2+6x+9\right)-14=\left(x+3\right)^2-14\ge-14\)

Vậy GTNN của B là -14 khi x = -3

\(C=x\left(x-3\right)=x^2-3x=\left(x^2-3x+\dfrac{9}{4}\right)-\dfrac{9}{4}=\left(x-\dfrac{3}{2}\right)^2-\dfrac{9}{4}\ge-\dfrac{9}{4}\)

Vậy GTNN của C là \(-\dfrac{9}{4}\) khi x = \(\dfrac{3}{2}\)

\(D=x^2+y^2-4x+20=\left(x^2-4x+4\right)+y^2+16=\left(x-2\right)^2+y^2+16\ge16\)

Vậy GTNN của D là 16 khi x = 2; y = 0

\(E=x^2+2y^2-2xy+4x-6y+100\)

\(E=\left(x^2+y^2+4-2xy+4x-4y\right)+\left(y^2-2y+1\right)+95\)

\(E=\left(x-y+2\right)^2+\left(y-1\right)^2+95\ge95\)

Vậy GTNN của E là 95 khi x = -1 ; y = 1

\(F=2x^2+y^2-2xy+4x+100\)

\(F=\left(x^2-2xy+y^2\right)+\left(x^2+4x+4\right)+96\)

\(F=\left(x-y\right)^2+\left(x+2\right)^2+96\ge96\)

Vậy GTNN của F là 96 khi x = -2; y = -2

13 tháng 8 2018

\(A=-x^2-12x+3=-\left(x^2+12x+36\right)+39=-\left(x+6\right)^2+39\le39\)

Vậy GTLN của A là 39 khi x = -6

\(B=7-4x^2+4x=-\left(4x^2-4x+1\right)+8=-\left(2x-1\right)^2+8\le8\)

Vậy GTLN của B là 8 khi x = \(\dfrac{1}{2}\)