Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\Leftrightarrow\dfrac{y+5}{y\left(y-5\right)}-\dfrac{y-5}{2y\left(y+5\right)}=\dfrac{y+25}{2\left(y-5\right)\left(y+5\right)}\)
\(\Leftrightarrow2\left(y+5\right)^2-\left(y-5\right)^2=y^2+25y\)
=>\(2y^2+20y+50-y^2+10y-25=y^2+25y\)
=>30y+25=25y
=>5y=-25
=>y=-5(loại)
b: \(\Leftrightarrow x\left(x+1\right)+x\left(x-3\right)=4x\)
=>x^2+x+x^2-3x-4x=0
=>2x^2-6x=0
=>2x(x-3)=0
=>x=0(nhận) hoặc x=3(loại)
c: =>x^2-9-6(2x+7)=-13(x+3)
=>x^2-9-12x-42+13x+39=0
=>x^2+x-6=0
=>(x+3)(x-2)=0
=>x=2(nhận) hoặc x=-3(loại)
a) Ta có: \(B=\dfrac{xy+1-x-y}{y+z-1-yz}\)
\(=\dfrac{\left(xy-x\right)+\left(1-y\right)}{\left(y-1\right)+\left(z-yz\right)}=\dfrac{\left(y-1\right)\left(x-1\right)}{\left(y-1\right)\left(1-z\right)}=\dfrac{x-1}{1-z}\)
b) Khi \(x=-\dfrac{3}{2};z=-\dfrac{3}{4}\) thì :
\(B=\dfrac{-\dfrac{3}{2}-1}{1+\dfrac{3}{4}}=-\dfrac{10}{7}\)
Bài 1:
\(\frac{15ab+5b^2}{9a^2-b^2}=\frac{5b\left(3a+b\right)}{\left(3a\right)^2-b^2}=\frac{5b\left(3a+b\right)}{\left(3a-b\right)\left(3a+b\right)}=\frac{5b}{3a-b}\)
\(\frac{3x^2-3y^2}{9x+9y}=\frac{3\left(x^2-y^2\right)}{9\left(x+y\right)}=\frac{\left(x-y\right)\left(x+y\right)}{3\left(x+y\right)}=\frac{x-y}{3}\)
\(\frac{m^2-4m+4}{2x-4}=\frac{\left(x-2\right)^2}{2\left(x-2\right)}=\frac{x-2}{2}\)
a. Với y = 2 ta được:
\(A=\dfrac{x+2}{2-1}\)
\(B=\dfrac{4x\left(x+5\right)}{2+2}\)
Ta có pt:
\(\dfrac{x+2}{1}+3=\dfrac{4x\left(x+5\right)}{4}\)
\(\Leftrightarrow\dfrac{4\left(x+2\right)}{4}+\dfrac{12}{4}=\dfrac{4x^2+20x}{4}\)
\(\Leftrightarrow4x+8+12=4x^2+20x\)
\(\Leftrightarrow4x+20=4x^2+20x\)
\(\Leftrightarrow-4x^2-16x+20=0\)
\(\Leftrightarrow4x^2+16x-20=0\)
\(\Leftrightarrow\left(4x^2-4x\right)+\left(20x-20\right)=0\)
\(\Leftrightarrow4x\left(x-1\right)+20\left(x-1\right)=0\)
\(\Leftrightarrow\left(4x+20\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-5\\x=1\end{matrix}\right.\)
Vậy..........