K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 9 2016

a ) Ta có : \(\widehat{xOy}+\widehat{x'Oy}=180^0\)

\(\Rightarrow\widehat{x'Oy}=180-60=120^0\)

Ta có : 

\(\widehat{x'Oy}+\widehat{x'Oy'}=180\)

\(\Rightarrow\widehat{x'Oy'}=180-120=60^0\)

Ta lại có : 

\(\widehat{x'Oy'}+\widehat{xOy'}=180^0\)

\(\Rightarrow\widehat{xOy'}=180-60=120^0\)

b ) Ta có : \(\widehat{xOy}=\widehat{x'Oy'}=60^0\)

\(\Rightarrow\) Tia phân giác của \(\widehat{xOy}=\widehat{x'Oy'}\)\(\Rightarrow Om\) và \(On\) là hai tia đối nhau .

13 tháng 9 2016

Bạn tự vẽ hình nha ==''

a.

xOy = x'Oy' (2 góc đối đỉnh)

mà xOy = 600

=> x'Oy' = 600

xOy + yOx' = 1800 (2 góc kề bù)

600 + yOx' = 1800 

yOx' = 1800 - 600

yOx' = 1200

mà yOx' = y'Ox (2 góc đối đỉnh)

=> y'Ox = 1200

b.

Om là tia phân giác của xOy

=> xOm = mOy = xOy/2

On là tia phân giác của x'Oy'

=> x'On = nOy' = x'Oy'/2

mà xOy = x'Oy' (2 góc đối đỉnh)

=> xOm = x'On

mà xOn + nOx' = 1800 (2 góc kề bù)

=> xOn + xOm = 1800

=> xOn và xOm kề bù

=> On và Om là 2 tia đối

Chúc bạn học tốt ^^

14 tháng 9 2017

 1, xOy=5xOy' 
xOy+xOy'=180độ 
--->xOy=150độ mà xOy=x'Oy'(do 2 góc đối đỉnh)-->x'Oy'=150 độ 
2, phân giác 2 góc đối đỉnh = 180 độ

7 tháng 1 2020

Toán ôn rồi Ko làm thì lượn đi.

x x' y y' O n m

a.sử dụng 2 góc đối đỉnh và 2 góc kề bù

b Dễ thấy:

\(\widehat{nOx}+\widehat{xOy'}+\widehat{y'Om}=30^0+120^0+30^0=180^0\) là góc bẹt

=> 2 tia đối nhau

7 tháng 1 2020

hình vẽ :

y x' m n O x y'

bài giải : 

a, vì góc x'Oy' là  góc đối đỉnh, mà góc xOy = 60o nên x'Oy' = 60o .

Góc xOy và góc xOy' là 2 góc kề bù nên xOy + xOy' = 180o hay 60o + xOy' = 1800

do đó xOy' = 1800 - 600 = 1200

 Góc xOy' là góc đối đỉnh với xOy' nên xOy' = x'Oy' = 1200

b, Om, On theo thứ tự là các tia phân giác của 2 góc xOy và xOy' nên  :

\(\widehat{xOm}=\widehat{mOy}=\frac{1}{2}\widehat{xOy}\) và \(\widehat{nOy'}=\frac{1}{2}\widehat{x'Oy'}\)

mà xOy = x'Oy' => xOm = mOy = nOx' = nOy' = \(\frac{1}{2}\widehat{xOy}\)

Ta có : xOm = nOy' = y'Ox =xOm = y'Ox + xOm + mOy = y'Ox + xOy = 180o

Góc mOn là góc bét , vì thế hai tia Om và On là 2 tia đối nhau

29 tháng 7 2016

x x' y y' O 60^0 60 độ

29 tháng 7 2016

Vì góc xOy đối đỉnh với góc x'Oy' nên góc x'Oy' = góc xOy = 60 độ

Ta thấy: Góc xOy' + góc x'Oy' = 1800 ( kề bù )

=> Góc xOy' = 180 độ - 60 độ = 120 độ

Vì góc xOy' và x'Oy đối đỉnh nên góc x'Oy = góc xOy' = 120 độ

24 tháng 5 2019

x x' y y' O m n

a) +) Vì Ox đối với Ox' và Oy đối với Oy' nên \(\widehat{xOy}\) và \(\widehat{x'Oy'}\) đối đỉnh

\(\Rightarrow\)\(\widehat{xOy}=\)\(\widehat{x'Oy'}\)

hay  \(\widehat{x'Oy'}\)\(=40^0\)

   +) Ta có: \(\widehat{xOy}+\widehat{x'Oy}=180^0\) (kề bù)

hay \(40^0+\widehat{x'Oy}=180^0\)

\(\Leftrightarrow\widehat{x'Oy}=180^0-40^0\)

\(\Leftrightarrow\widehat{x'Oy}=140^0\)

   +) Ta có: \(\widehat{xOy}+\widehat{xOy'}=180^0\) (kề bù)

hay \(40^0+\widehat{xOy'}=180^0\)

\(\Leftrightarrow\widehat{xOy'}=180^0-40^0\)

\(\Leftrightarrow\widehat{xOy'}=140^0\)

b) Vì \(\widehat{xOy}=\widehat{x'Oy'}\)(hai góc đối đỉnh)

Mà Om là tia phân giác của góc xOy và On là tia phân giác của x'Oy' nên Om đối On (đpcm)

27 tháng 7 2019

y m x O x' n y'

a, Vì góc x'Oy' và góc xOy là hai góc đối đỉnh, mà \(\widehat{xOy}=40^0\)nên \(\widehat{x'Oy'}=40^0\). Góc xOy và góc xOy' là hai góc kề bù nên \(\widehat{xOy}+\widehat{xOy'}=180^0\)hay \(40^0+\widehat{xOy'}=180^0\)

=> \(\widehat{xOy'}=180^0-40^0=140^0\)

Góc xOy' là góc đối đỉnh với góc xOy' nên \(\widehat{xOy}=\widehat{x'Oy}=140^0\)

b, Om,On theo thứ tự là các tia phân giác của hai góc xOy và x'Oy' nên \(\widehat{xOm}=\widehat{mOy}=\frac{1}{2}\widehat{xOy}\)và \(\widehat{nOx'}=\widehat{mOy'}=\frac{1}{2}\widehat{x'Oy'}\)mà \(\widehat{xOy}=\widehat{x'Oy'}\), do đó \(\widehat{xOm}=\widehat{mOy}=\widehat{nOx'}=\widehat{nOy'}=\frac{1}{2}\widehat{xOy}\).

Ta có : \(\widehat{xOm}=\widehat{nOy'}=\widehat{y'Ox}=\widehat{xOm}=\widehat{y'Ox}+\widehat{xOm}+\widehat{mOy}\)

\(=\widehat{y'Ox}+\widehat{xOy}=180^0\)

Góc mOn là góc bẹt,vì thế hai tia Om,On là hai tia đối nhau

15 tháng 9 2016

mấy bài toán  này là dành cho hs trung bình đó bn

bn cố gắng suy nghĩ lm để nhớ bài nha

mihf cx chỉ ms hc lớp 7 nhưng minhg pt cách lm nek

tíc mình nha

Bài 1: Cho hai đường thẳng xx'và yy' cắt nhau tại O.Biết góc xOy= 60 độ.a) Tính các góc x'Oy', xOy', x'Oyb)Vẽ tia phân giác Om của góc xOy và tia phân giác On của góc x'Oy. Hai tia Om và On có phải là hai tia đối nhau ko?Vì saoBài 2: Cho góc tù AOB trong góc này vẽ hai tia OC bà OD Lần Lượt vuông góc với OA và OB.a) So sánh góc AOD và BOCb) Vẽ tia OM là tia phân giác của COD, tia OM có phải là tia phân giác của góc...
Đọc tiếp

Bài 1: Cho hai đường thẳng xx'và yy' cắt nhau tại O.Biết góc xOy= 60 độ.

a) Tính các góc x'Oy', xOy', x'Oy

b)Vẽ tia phân giác Om của góc xOy và tia phân giác On của góc x'Oy. Hai tia Om và On có phải là hai tia đối nhau ko?Vì sao

Bài 2: Cho góc tù AOB trong góc này vẽ hai tia OC bà OD Lần Lượt vuông góc với OA và OB.

a) So sánh góc AOD và BOC

b) Vẽ tia OM là tia phân giác của COD, tia OM có phải là tia phân giác của góc AOB không? Vì sao?

Bài 3: Trên đường thẳng AA' lấy điểm O. Trên nửa mặt phẳng bờ AA' vẽ tia OB sao cho góc AOB= 45 độ, trên nửa mặt phẳng còn lại vẽ tia OC sao cho góc AOC+ 90 độ

a) Gọi AB' là tia phân giác của góc A'OC. Chứng tỏ góc AOB và góc A'OB là hai góc đối đỉnh

b)Trên nửa mặt phẳng bờ AA' có chứa tia OB. Vẽ tia OD sao cho góc DOB=90 độ. Tính góc A'OD.

CÁC BẠN GIÚP MÌNH VS MÌNH ĐANG CẦN GẤP

4
25 tháng 8 2019

Bài 1

x x' y y' O ) 1 2 3 4 m n

a

Ta có:

\(\widehat{O_1}=\widehat{O_2}=60^0\left(đ.đ\right)\)

\(\widehat{O_1}+\widehat{O_2}=180^0\Rightarrow\widehat{0_2}=180^0-\widehat{O_1}=180-60^0=120^0\)

\(\widehat{O_2}=\widehat{O_4}=120^0\left(đ.đ\right)\)

b

Ta có:

\(\widehat{x'Oy}=\widehat{y'Ox}\Rightarrow\frac{1}{2}\widehat{x'Oy}=\frac{1}{2}\widehat{y'Ox}\Rightarrow\widehat{yOn}=\widehat{xOm}\)

\(\widehat{x'Oy}+\widehat{yOx}=180^0\)

\(\Rightarrow2\cdot\widehat{yOn}+\widehat{yOx}=180^0\)

\(\Rightarrow\widehat{yOn}+\widehat{yOx}+\widehat{xOm}=180^0\)

\(\Rightarrowđpcm\)

25 tháng 8 2019

Bài 2
A O B C D M

a

Ta có:

\(\widehat{BOD}=\widehat{AOC}=90^0\Rightarrow\widehat{BOC}+\widehat{COD}=\widehat{AOD}+\widehat{COD}\Rightarrow\widehat{BOC}=\widehat{AOD}\)

b

Ta có:

\(\widehat{BOM}=\widehat{BOC}+\widehat{COM}=\widehat{AOD}+\widehat{MOD}=\widehat{MOA}\)

Hiển nhiên OM nằm giữa \(\widehat{AOB}\) nên suy ra đpcm