Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Đặt \(C=3\left(x-1\right)^2-\left(x+1\right)^2+2\left(x-3\right)\left(x+3\right)-\left(2x+3\right)^2-\left(5-20x\right)\)
\(D=5x\left(x-7\right)\left(x+7\right)-x\left(2x-1\right)^2-\left(x^3+4x^2-246x\right)-175\)
Do đó: A=C+D
\(C=3\left(x-1\right)^2-\left(x+1\right)^2+2\left(x-3\right)\left(x+3\right)-\left(2x+3\right)^2-\left(5-20x\right)\)
\(=3x^2-6x+3-x^2-2x-1+2x^2-18-\left(4x^2+12x+9\right)-5+20x\)
\(=4x^2-8x-16-4x^2-12x-9-5+20x\)
\(=-30\)
\(D=5x\left(x-7\right)\left(x+7\right)-x\left(2x-1\right)^2-\left(x^3+4x^2-246x\right)-175\)
\(=5x\left(x^2-49\right)-x\left(4x^2-4x+1\right)-x^3-4x^2+246x-175\)
\(=5x^3-245x-4x^3+4x^2-x-x^3-4x^2+246x-175\)
=-175
A=C+D=-30-175=-205
b: Đặt \(E=-2x\left(3x+2\right)^2+\left(4x+1\right)^2+2\left(x^3+8x^2+3x-2\right)-\left(5-x\right)\)
\(F=\left(5x-2\right)^2-\left(6x+1\right)^2+11\left(x-2\right)\left(x+2\right)-16\left(3-2x\right)\)
Do đó: B=E+F
\(E=-2x\left(3x+2\right)^2+\left(4x+1\right)^2+2\left(x^3+8x^2+3x-2\right)-\left(5-x\right)\)
\(=-2x\left(9x^2+12x+4\right)+16x^2+8x+1+2x^3+16x^2+6x-4-5+x\)
\(=-18x^3-24x^2-8x+32x^2+14x+1-5+x\)
\(=-18x^3+8x^2+7x-4\)
\(F=\left(5x-2\right)^2-\left(6x+1\right)^2+11\left(x-2\right)\left(x+2\right)-16\left(3-2x\right)\)
\(=25x^2-20x+4-36x^2-12x-1+11x^2-44-48+32x\)
\(=-95\)
\(B=-18x^3+8x^2+7x-99\)
Bài 1:
a: \(A=3\left(x^2-2x+1\right)-\left(x^2+2x+1\right)+2\left(x^2-9\right)-\left(4x^2+12x+9\right)-5+20x\)
\(=3x^2-6x+3-x^2-2x-1+2x^2-18-\left(4x^2+12x+9\right)-5+20x\)
\(=4x^2-8x-16-5+20x-4x^2-12x-9\)
\(=-30\)
b: \(B=5x\left(x^2-49\right)-x\left(4x^2-4x+1\right)-\left(x^3+4x^2-246x\right)-175\)
\(=5x^3-245x-4x^3+4x^2-x-x^3-4x^2+246x-175\)
\(=-175\)
d: \(D=25x^2-20x+4-36x^2-12x-1+11\left(x^2-4\right)-48+32x\)
\(=-11x^2-32x+3-48+32x+11x^2-44\)
=-89
Câu 1: Chứng minh giá trị của biểu thức không phụ thuộc vào biến x
A = x (5x - 3) - x2 ( x - 1) + x (x2 - 6x) + 3x - 10
A= 5x2-3x -x3 +x2 +x3-6x2+3x-10
A= -10
Vậy giá trị của biểu thức A ko phụ thuộc vào biến x
B = ( 2x + 1) x - x2 (x + 2) + x3 - x + 3
B= 2x2+x-x3-2x2+x3-x+3
B= 3
Vậy giá trị của biểu thức B ko phụ thuộc vào biến x
C = 5x ( x2 - 7x + 2) - x2 (5x - 8) + 27x2 - 10x + 2
C= 5x3-35x2+10x-5x3+8x2+27x2-10x+2
C= 2
Vậy giá trị của biểu thức C ko phụ thuộc vào biến x
Câu 2: Tìm x:
1. 4x (3x + 2) - 6x (2x + 5) + 21 (x - 1) = 0
=> 12x2 + 8x -12x2 -30x +21x -21=0
=> -x -21 = 0
=> x = -21
Vậy x = -21
2. 5x (12x + 7) - 3x (20x - 5) = -100
=> 60x2 + 35x - 60x2 + 15x +100=0
=> 50x + 100 =0
=> x = -2
Vậy x = -2
4. 10 (3x - 2) - 3 (5x + 2) + 5 (11 - 4x) = 25
=> 30x-20-15x-6+55-20x-25=0
=> -5x +4 =0
=> x = 4/5
Vậy x = 4/5
Câu 1
a) \(A=x\left(5x-3\right)-x^2\left(x-1\right)+x\left(x^2-6x\right)+3x-10\)
\(A=5x^2-3x-x^3+x^2+x^3-6x^2+3x-10\)
\(A=-10\)
Vậy biểu thức A không phụ thuộc vào biến x
b) \(B=\left(2x+1\right)x-x^2\left(x+2\right)+x^3-x+3\)
\(B=2x^2+x-x^3-2x^2+x^3-x+3\)
\(B=3\)
Vậy biểu thức B không phụ thuộc vào biến x
c) \(C=5x\left(x^2-7x+2\right)-x^2\left(5x-8\right)+27x^2-10x+2\)
\(C=5x^3-35x^2+10x-5x^3+8x^2+27x^2-10x+2\)
C = 2
Vậy biểu thức C không phụ thuộc vào biến x
A = ( 3x - 5 ) ( 2x + 11 ) - ( 2x + 3 ) ( 3x + 7 )
=> A = 6x2 + 23x - 55 - 6x2 - 23x - 21
=> A = - 55 - 21
=> A = - 76 ( không phụ thuộc vào biến x )
B = ( 2x + 3 ) ( 4x2 - 6x + 9 ) - 2 ( 4x3 - 1 )
=> B = 8x3 + 27 - 8x3 + 2
=> B = 27 + 2
=> B = 29 ( không phụ thuộc vào biến x )
C = ( x - 1 )3 - ( x + 1 )3 + 6 ( x + 1 ) ( x - 1 )
=> C = x3 - 3x2 + 3x - 1 - x3 - 3x2 - 3x - 1 + 6x2 - 6
=> C = - 6x2 - 2 + 6x2 - 6
=> C = - 2 - 6
=> C = - 8 ( không phụ thuộc vào biến x )
\(a,\left(6x+1\right)\left(x+2\right)-2x\left(3x-5\right)\)
\(=6x^2+12x+x+2-6x^2+10x\)
\(=23x+2\)
a) (6x + 1)(x + 2) - 2x(3x - 5)
= 6x2 + 12x + x + 2 - 6x2 + 10x
= (6x2 - 6x2) + (12x + x + 10x) + 2
= 23x + 2
b) (2x - 1)2 - (2x - 3)(2x + 3)
= 4x2 - 4x + 1 - 4x2 + 9
= (4x2 - 4x2) - 4x + (1 + 9)
= -4x + 10
c) (2x - 3)3 - (3x + 1)(5 - 4x) - 16x2
= 8x3 - 36x2 + 54x - 15x + 12x2 - 5 + 4x - 16x2
= 8x3 - (36x2 - 12x2 + 16x2) + (54x - 15x + 4x) - 5
= 8x3 - 40x2 + 43x - 5
d) (3x + 2) - (x - 5) - x(3x - 13)
= 3x + 2 - x + 5 - 3x2 + 13x
= (3x - x + 13x) + (2 + 5) - 3x2
= 15x + 7 - 3x2
4.a) \(2x^2-10x-3x-2x^2-26=0\)
\(-13x-26=0\Rightarrow-13\left(x+2\right)=0\)
\(\Rightarrow x=-2\)
b) \(2\left(x+5\right)-x^2-5x=0\)
\(2x+10-x^2-5x=0\Leftrightarrow-x^2-3x+10=0\)
\(-\left(x^2+3x-10\right)=0\)
\(-\left(x^2-2x+5x-10\right)=-\left(x\left(x-2\right)+5\left(x-2\right)\right)=0\)
\(-\left(x-2\right)\left(x+5\right)=0\)
\(\left\{{}\begin{matrix}x-2=0\\x+5=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=2\\x=-5\end{matrix}\right.\)
c) \(\left(2x-3\right)^2-\left(x+5\right)^2=0\)
\(\left(2x-3-x-5\right)\left(2x-3+x+5\right)=0\)
\(\left(x-8\right)\left(3x+2\right)=0\)
\(\left\{{}\begin{matrix}x-8=0\\3x+2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=8\\x=-\dfrac{2}{3}\end{matrix}\right.\)
d) \(x^3+x^2-4x-4=0\)
\(x^2\left(x+1\right)-4\left(x+1\right)=0\)
\(\left(x+1\right)\left(x^2-4\right)=\left(x+1\right)\left(x-2\right)\left(x+2\right)=0\)
\(\Rightarrow\left\{{}\begin{matrix}x+1=0\\x-2=0\\x+2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-1\\x=2\\x=-2\end{matrix}\right.\)
g) \(\left(x-1\right)\left(2x+3-x\right)=0\)
\(\left(x-1\right)\left(x+3\right)=0\)
\(\Rightarrow\left\{{}\begin{matrix}x-1=0\\x+3=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=1\\x=-3\end{matrix}\right.\)
h) \(x^2-4x+8-2x+1=x^2-6x+9=0\)
\(\left(x-3\right)^2=0\Rightarrow x=3\)
a: Đặt \(C=3\left(x-1\right)^2-\left(x+1\right)^2+2\left(x-3\right)\left(x+3\right)-\left(2x+3\right)^2-\left(5-20x\right)\)
\(D=5x\left(x-7\right)\left(x+7\right)-x\left(2x-1\right)^2-\left(x^3+4x^2-246x\right)-175\)
Do đó: A=C+D
\(C=3\left(x-1\right)^2-\left(x+1\right)^2+2\left(x-3\right)\left(x+3\right)-\left(2x+3\right)^2-\left(5-20x\right)\)
\(=3x^2-6x+3-x^2-2x-1+2x^2-18-\left(4x^2+12x+9\right)-5+20x\)
\(=4x^2-8x-16-4x^2-12x-9-5+20x\)
\(=-30\)
\(D=5x\left(x-7\right)\left(x+7\right)-x\left(2x-1\right)^2-\left(x^3+4x^2-246x\right)-175\)
\(=5x\left(x^2-49\right)-x\left(4x^2-4x+1\right)-x^3-4x^2+246x-175\)
\(=5x^3-245x-4x^3+4x^2-x-x^3-4x^2+246x-175\)
=-175
A=C+D=-30-175=-205
b: Đặt \(E=-2x\left(3x+2\right)^2+\left(4x+1\right)^2+2\left(x^3+8x^2+3x-2\right)-\left(5-x\right)\)
\(F=\left(5x-2\right)^2-\left(6x+1\right)^2+11\left(x-2\right)\left(x+2\right)-16\left(3-2x\right)\)
Do đó: B=E+F
\(E=-2x\left(3x+2\right)^2+\left(4x+1\right)^2+2\left(x^3+8x^2+3x-2\right)-\left(5-x\right)\)
\(=-2x\left(9x^2+12x+4\right)+16x^2+8x+1+2x^3+16x^2+6x-4-5+x\)
\(=-18x^3-24x^2-8x+32x^2+14x+1-5+x\)
\(=-18x^3+8x^2+7x-4\)
\(F=\left(5x-2\right)^2-\left(6x+1\right)^2+11\left(x-2\right)\left(x+2\right)-16\left(3-2x\right)\)
\(=25x^2-20x+4-36x^2-12x-1+11x^2-44-48+32x\)
\(=-95\)
\(B=-18x^3+8x^2+7x-99\)