K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 8 2017

a) \(S=5+5^2+5^3+...+5^{96}\)

\(S=\left(5+5^2+5^3+5^4+5^5+5^6\right)+...+\left(5^{91}+5^{92}+5^{93}+5^{94}+5^{95}+5^{96}\right)\)

\(S=5.\left(1+5+5^2+5^3+5^4+5^5\right)+...+5^{91}.\left(1+5^2+5^3+5^4+5^5\right)\)

\(S=5.3906+...+5^{91}.3906\)

\(S=3906.\left(5+...+5^{96}\right)\)

\(S=3.126.\left(5+...+5^{91}\right)\) chia hết cho \(6.\)

b) Do \(S\) là tổng các lũy thừa có cơ số là \(5\).

Cho nên mỗi lũy thừa đều tận cùng là \(5\).

\(S\) có tất cả \(96\) số

\(\Rightarrow\) Chữ số tận cùng của \(S\)\(0\).

14 tháng 8 2017

\(S=5+5^2+5^3+..+5^{96}\)

\(S=\left(5+5^2+5^3+5^4+5^5+5^6\right)+\left(5^7+5^8+5^9+5^{10}+5^{11}+5^{12}\right)+...+\left(5^{91}+5^{92}+5^{93}+5^{94}+5^{95}+5^{96}\right)\)\(S=1\left(5+5^2+5^3+5^4+5^6\right)5^6\left(5+5^2+5^3+5^4+5^5+5^6\right)+...+5^{90}+\left(5+5^2+5^3+5^4+5^5+5^6\right)\)\(S=\left(5+5^2+5^3+5^4+5^5+5^6\right)\left(1+5^6+...+5^{90}\right)\)\(S=19530\left(1+5^6+...+5^{90}\right)\)

\(S=155.126.\left(1+5^6+...+5^{90}\right)\)

\(S⋮126\rightarrowđpcm\)

\(S=5+5^2+5^3+...+5^{96}\)

\(S=\overline{...5}+\overline{...5}+\overline{...5}+\overline{...5}+...+\overline{...5}+\overline{...5}\)\(S=\left(\overline{...5}+\overline{...5}\right)+\left(\overline{...5}+\overline{...5}\right)+...+\left(\overline{...5}+\overline{...5}\right)\)\(S=\overline{...0}+\overline{...0}+\overline{...0}\)

\(S=\overline{...0}\)

Bài làm

Ta có: 

S = 5 + 52 + 53 + ... + 596 

S = ( 5 + 54 ) + ( 52 + 55 ) + ( 53 + 56 ) + ... + ( 592 + 595 ) + ( 593 + 596 )

S = 5( 1 + 53 ) + 52( 1 + 53 ) + 53( 1 + 53 ) + ... + 592( 1 + 53 ) + 593( 1 + 53 )

S = 5( 1 + 125 ) + 52( 1 + 125 ) + 53( 1 + 125 ) + ... + 592( 1 + 125 ) + 593( 1 + 125 )

S = ( 1 + 125 )( 5 + 52 + 53 + ... + 592 + 593 )

S = 126( 5 + 52 + 53 + ... + 592 + 593 )

Mà \(126⋮126\)

=> \(126\left(5+5^2+5^3+...+5^{92}+5^{93}\right)⋮126\)

Vậy \(S=5+5^2+5^3+...+5^{96}⋮126\)

# Học tốt #

9 tháng 9 2020

a) Ta có : S = 4 + 42 + 43 + ... + 490

=> 4S = 42 + 43 + 44 + ... + 491

=> 4S - S = (42 + 43 + 44 + ... + 491) - (4 + 42 + 43 + ... + 490)

=> 3S = 491 - 4

=> S = \(\frac{4^{91}-4}{3}\)

b) Khi đó 3S + 4 = 4x + 10

<=> 491 - 4 + 4 = 4x + 10

=> 4x + 10  491

=> x + 10 = 91

=> x = 81

Vậy x = 81

9 tháng 9 2020

S = 4 + 42 + 43 + ... + 490

Chứng minh chia hết cho 5

S = ( 4 + 42 ) + ( 43 + 44 ) + ... + ( 489 + 490 )

    = 4( 1 + 4 ) + 43( 1 + 4 ) + ... + 489( 1 + 4 )

    = 4.5 + 43.5 + ... + 489.5

    = 5( 4 + 43 + ... + 489 ) chia hết cho 5 ( đpcm )

Chứng minh chia hết cho 21

S = ( 4 + 42 + 43 ) + ( 44 + 45 + 46 ) + ... + ( 488 + 489 + 490 )

= 4( 1 + 4 + 42 ) + 44( 1 + 4 + 42 ) + ... + 488( 1 + 4 + 42 )

= 4.21 + 44.21 + ... + 488.21

= 21( 4 + 44 + ... + 488 ) chia hết cho 21 ( đpcm )

Tính S

S = 4 + 42 + 43 + ... + 490

4S = 4( 4 + 42 + 43 + ... + 490 )

     = 42 + 43 + 44 + ... + 491

4S - S = 3S

= ( 42 + 43 + 44 + ... + 491 ) - ( 4 + 42 + 43 + ... + 490 )

= 42 + 43 + 44 + ... + 491 - 4 - 42 - 43 - ... - 490 

= 491 - 4

\(3S=4^{91}-4\Rightarrow S=\frac{4^{91}-4}{3}\)

Tìm x

3S + 4 = 4x+10 ( 3S mới tính được bạn nhé '-' )

<=> 491 - 4 + 4 = 4x+10

<=> 491 = 4x+10

<=> 91 = x + 10

<=> x = 81

4 tháng 8 2015

nhìn thấy thì chóng mặt

chỉ cần làm 1 trong 8 câu là đủ rồi

26 tháng 3 2016

4*9*6*5*6*9*4*1+0*1=6*0*5*5+0=0

5 tháng 6 2016

3)

a)\(\frac{4n+5}{n}=4+\frac{5}{n}\)nguyen nen n\(\in\)U(5)=\(\left\{1,5\right\}\)vi n thuoc N

b)\(\frac{n+5}{n+1}=1+\frac{4}{n+1}\)nguyen nen (n+1)\(\in U\left(4\right)=\left\{1,2,4\right\}\)vi n+1>-1

=> n\(\in\left\{0,1,3\right\}\)

5 tháng 6 2016

Bài 1:

a)[(2x-13):7].4 = 12

Sử dụng tính chất tỉ lệ thức, có thể biến đổi phương trình như sau

\(\Leftrightarrow\frac{8x-52}{7}=\frac{12}{1}\Rightarrow\left(8x-52\right)1=7.12\)

Chia cả hai vế cho 4 ta đc:

\(\frac{8x-52}{4}=\frac{7.12}{4}\)

\(\Leftrightarrow2x-13=21\)

\(\Leftrightarrow2x=34\)

\(\Leftrightarrow x=17\)

b.1270:[115 - (x-3)] = 254

\(\Leftrightarrow\frac{1270}{118-x}=254\)

\(\Leftrightarrow-\frac{254\left(x-113\right)}{x-118}=0\)

\(\Leftrightarrow-254\left(x-113\right)=0\)

\(\Leftrightarrow x-113=0\)

\(\Leftrightarrow x=113\)

Bài 2:(mk ngu toán CM)

Bài 3:

a)\(\frac{4n+5}{n}=\frac{4n}{n}+\frac{5}{n}=4+\frac{5}{n}\in Z\)

=>5 chia hết n

=>n thuộc Ư(5)

=>n thuộc {1;5) Vì n thuộc N

b)(n+5) chia hết cho (n+1)

=>n+1+4 chia hết n+1

=>4 chia hết n+1

=>n+1 thuộc Ư(4)

=>n+1 thuộc {1;2;4} Vì n thuộc N

=>n thuộc {0;1;3}

9 tháng 8 2015

S=(5+5^2+5^3)+(5^4+5^5+5^6)+...+(5^28+5^29+5^30) 

=>Có 30:3=10 nhóm

=>S=5(1+5+5^2)+...+5^28(1+5+5^2)

=>S=5.31+...+5^28.31

S=31(5+....+5^28) chia hết cho 31

nhớ bấm đúng cho mình bạn nhé

5 tháng 11 2017

ban kia lam dung roi do

k tui nha

thanks