Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2< 2x\)
\(\Leftrightarrow-2< x< 2\)
\(\Leftrightarrow x\in\left\{-1;0;1\right\}\)
\(\left(x+2\right)\left(x-2\right)-\left(x-3\right)\left(x+1\right)\)
\(=\left(x^2-2x+2x-4\right)-\left(x^2+x-3x-3\right)\)
\(=x^2-2x+2x-4-x^2-x+3x+3\)
\(=x^2-x^2-2x+2x+3x-4+3\)
\(=3x-1\)
Chúc bạn học tốt!!!
a) \(x^3-\dfrac{1}{9}x=0\)
\(\Rightarrow x\left(x^2-\dfrac{1}{9}\right)=0\)
\(\Rightarrow x\left(x-\dfrac{1}{3}\right)\left(x+\dfrac{1}{3}\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x-\dfrac{1}{3}=0\Leftrightarrow x=\dfrac{1}{3}\\x+\dfrac{1}{3}=0\Leftrightarrow x=-\dfrac{1}{3}\end{matrix}\right.\)
b) \(x\left(x-3\right)+x-3=0\)
\(\Rightarrow\left(x-3\right)\left(x+1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-3=0\Rightarrow x=3\\x+1=0\Rightarrow x=-1\end{matrix}\right.\)
c) \(2x-2y-x^2+2xy-y^2=0\) (thêm đề)
\(\Rightarrow2\left(x-y\right)-\left(x-y\right)^2=0\)
\(\Rightarrow\left(x-y\right)\left(2-x+y\right)=0\)
\(\Rightarrow\left\{{}\begin{matrix}x-y=0\Rightarrow x=y\\2-x+y=0\Rightarrow x-y=2\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=y\left(1\right)\\\left(1\right)\Rightarrow x-x=2\left(loại\right)\end{matrix}\right.\)
d) \(x^2\left(x-3\right)+27-9x=0\)
\(\Rightarrow x^2\left(x-3\right)+\left(x-3\right).9=0\)
\(\Rightarrow\left(x-3\right)\left(x^2+9\right)=0\)
\(\Rightarrow x-3=0\Rightarrow x=3.\)
Ta có: A = \(\left(x+3y-5\right)^2-6xy+26\)
=> A = \(x^2+9y^2+25+6xy-10x-30y+6xy+26\)
=> A = \(\left(x^2-10x+25\right)+\left(9y^2-30y+25\right)+1\)
=> A = \(\left(x-5\right)^2+\left(3y-5\right)^2+1\)
Vì \(\left\{{}\begin{matrix}\left(x-5\right)^2\ge0\\\left(3y-5\right)^2\ge0\end{matrix}\right.\) => A \(\ge\) 1
=> Dấu bằng xảy ra <=> \(\left\{{}\begin{matrix}x-5=0\\3y-5=0\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}x=5\\y=\dfrac{5}{3}\end{matrix}\right.\)
=> GTNN của A =1 khi x = 5; y = \(\dfrac{5}{3}\)
mk chỉ làm bài 1 và 1 câu bài 2 vi no tuong duong
1. x+x +2 = 86
x = số thứ nhất = 42
x+2 = số t2 = 44
2.a) x2-6x +10 = (x-3)2 +1 >0 với mọi x
(vì (x-3)2 >= 0)
a: \(x^2-4x+3=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-3\right)=0\)
=>x=1 hoặc x=3
b: \(x^2+x-12=0\)
=>(x+4)(x-3)=0
=>x=3 hoặc x=-4
c: \(3x^2+2x-5=0\)
\(\Leftrightarrow3x^2+5x-3x-5=0\)
=>(3x+5)(x-1)=0
=>x=1 hoặc x=-5/3
d: \(x^4-2x^2-3=0\)
\(\Leftrightarrow x^4-3x^2+x^2-3=0\)
\(\Leftrightarrow x^2-3=0\)
hay \(x\in\left\{\sqrt{3};-\sqrt{3}\right\}\)
(8x-3)(3x+3)-(4x+7)(x+4)=(2x+1)(5x-1)
⇔8x(3x+3)-3(3x+3) - 4x(x+4)+7(x+4) = 2x(5x-1)+1(5x-1)(Có thể bỏ bước này)
⇔\(24x^2\) +24x-9x-9-\(4x^2\)-16x+7x+28=\(10x^2\)- 2x+5x-1
⇔24\(x^2\) +24x- 9x- 4\(x^2\)-16x+7x-10\(x^2\)+ 2x-5x=9-28-1
⇔\(10x^2\) + 3x = -20
⇔ x(10x+3)=-20
⇔\(\left\{{}\begin{matrix}x=-20\\10x+3=-20\end{matrix}\right.\) ⇔\(\left\{{}\begin{matrix}x=-20\\10x=-17\end{matrix}\right.\) ⇔\(\left\{{}\begin{matrix}x=-20\\x=-17\end{matrix}\right.\)
Vậy x = { -20; -17}
Mình không chắc chắn là đúng vì kết quả khá xấu ^^''
\(\left(n+7\right)^2-\left(n-5\right)=n^2+14n+49-n+5=n^2+13n+54\)
Có sai đề ko vậy bạn
Về học lại hằng đẳng thức nha .-.
\(\Leftrightarrow\dfrac{\left(x+2\right)+5}{2-x}=\dfrac{2x-3}{\left(x-2\right)\left(x+2\right)}\\ \Leftrightarrow-\left(x+2\right)+5\left(x+2\right)=2x-3\\ \Leftrightarrow6x+12-2x+3=0\\ \Leftrightarrow4x+15=0\\ \Leftrightarrow x=\dfrac{-15}{4}\)
\(\dfrac{1}{x+2}+\dfrac{5}{2-x}=\dfrac{2x-3}{x^2-4}\)
\(\Leftrightarrow\dfrac{1}{x+2}-\dfrac{5}{x-2}-\dfrac{2x-3}{\left(x-2\right)\left(x+2\right)}=0\left(đk:x\ne\pm2\right)\)
\(\Leftrightarrow\dfrac{x-2-5\left(x+2\right)-2x-3}{\left(x-2\right)\left(x+2\right)}=0\)
\(\Leftrightarrow x-2-5x-10-2x-3=0\)
\(\Leftrightarrow-6x-15=0\)
\(\Leftrightarrow-6x=15\)
\(\Leftrightarrow x=-\dfrac{15}{6}\left(n\right)\)
Vậy \(S=\left\{-\dfrac{15}{6}\right\}\)