Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 :
a, ab + ba = (a*10 + b) + (b*10 + a)
= a*(10+1) + b*(1+10)
= a*11 + b*11 chia hết cho 11
b, abc - cba = (a*100 + b*10 + c) - (c*100 + b*10 + a)
= a*99 + 0b + c*(-99) chia hết cho 99
Bài 2:
a)\(8^{10}-8^9-8^8=\left(8^8.8^2\right)-\left(8^8.8\right)-8^8\)
\(=8^8.8^2-8^8.8-8^8=8^8.\left(8^2-8-1\right)\)
\(=8^8.55\Rightarrow8^{10}-8^9-8^8⋮55\)
b)\(7^6+7^5-7^4=\left(7^4.7^2\right)+\left(7^4.7\right)-7^4\)
\(=7^4.7^2+7^4.7-7^4\)\(=7^4.\left(7^2+7-1\right)\)
\(=7^4.55\Rightarrow7^6+7^5-7^4⋮11\)
A=2+22+23+24+...+212
A=(2+22+23)+(24+25+26)+...+(210+211+212)
A=14.1+23.14+...+29.14
A=14(1+23+...+29)\(⋮\)7
Vậy A\(⋮\)7
\(A=2\left(1+2+2^2\right)+...+2^{10}\left(1+2+2^2\right)=7\cdot\left(2+...+2^{10}\right)⋮7\)
\(A=2+2^2+2^3+....+2^{12}\\ \Rightarrow A=\left(2+2^2+2^3\right)+.....+\left(2^{10}+2^{11}+2^{12}\right)\\ \Rightarrow A=2.\left(1+2+2^2\right)+....+2^{10}\left(1+2+2^2\right)\)
\(\Rightarrow A=2.7+....+2^{10}.7\\ \Rightarrow A=7\left(2+....+2^{10}\right)⋮7\)
Từ 137 đến 578 có:
\(\left(578-137\right)\div3+1=148\) số chia hết cho 3.
\(\left(578-137\right)\div9+1=50\) số chia hết cho 9.
\(8^{2016}-8^{2014}=8^{2014}\left(8^2-1\right)=8^{2014}\times\left(64-1\right)=8^{2014}\times63=8^{2014}\times7\times9⋮9\)
1/
2100=(210)10=102410>100010=10302100=(210)10=102410>100010=1030
2100=231.26.263=231.64.5127<231.125.6257=231.53.(54)7=231.531=10312100=231.26.263=231.64.5127<231.125.6257=231.53.(54)7=231.531=1031
1030<2100<10311030<2100<1031
vậy 21002100 có 31 chữ số.
2\
a) Ðể 113 chia hết cho 7
=> 113 + x là B(7)
=> 113 + x = 7k
=> x = 7k — 113
b) 113 + x chia hết cho 13
=> 113 + x là B(13)
=>113 + x = 13k
=> x = 13k — 113