Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
f(x) = (2x - 5)2 = 4x2 - 20x + 25.Tổng các hệ số của đa thức f(x) được triển khai là : 4 - 20 + 25 = 9
Bài 1 :
a) \(3x^2+4x-7\)
\(=3x^2-3x+7x-7\)
\(=3x\left(x-1\right)+7\left(x-1\right)\)
\(\left(x-1\right)\left(3x+7\right)\)
b) \(3x^2+48+24x-12y^2\)
\(=3\left(x^2+16+8x-4y^2\right)\)
\(=3\left[\left(x+4\right)^2-\left(2y\right)^2\right]\)
\(=3\left(x-2y+4\right)\left(x+2y+4\right)\)
Bài 2 :
a) Phân thức xác định \(\Leftrightarrow\hept{\begin{cases}x-3y\ne0\\2xy-1\ne0\\x+2\ne0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ne3y\\2xy\ne1\\x\ne-2\end{cases}}}\)
b) \(A=\left(\frac{x+2y}{x-3y}+\frac{5y}{3y-x}-2xy\right)\cdot\frac{x+2}{2xy-1}+\frac{x^2-3}{x+2}\)
\(A=\left(\frac{x+2y}{x-3y}-\frac{5y}{x-3y}-\frac{2xy\left(x-3y\right)}{x-3y}\right)\cdot\frac{x+2}{2xy-1}+\frac{x^2-3}{x+2}\)
\(A=\left(\frac{x+2y-5y-2x^2y+6xy^2}{x-3y}\right)\cdot\frac{x+2}{2xy-1}+\frac{x^2-3}{x+2}\)
\(A=\left(\frac{x-3y-2x^2y+6xy^2}{x-3y}\right)\cdot\frac{x+2}{2xy-1}+\frac{x^2-3}{x+2}\)
\(A=\frac{\left(x-3y\right)-2xy\left(x-3y\right)}{x-3y}\cdot\frac{x+2}{2xy-1}+\frac{x^2-3}{x+2}\)
\(A=\frac{-\left(x-3y\right)\left(2xy-1\right)\left(x+2\right)}{\left(x-3y\right)\left(2xy-1\right)}+\frac{x^2-3}{x+2}\)
\(A=\frac{-\left(x+2\right)\left(x+2\right)}{\left(x+2\right)}+\frac{x^2-3}{x+2}\)
\(A=\frac{-x^2-4x-4+x^2-3}{x+2}\)
\(A=\frac{-4x-7}{x+2}\)
c) Thay x = 3 ( vì y bị triệt tiêu hết nên ko xét đến đỡ mệt ng :) )
\(A=\frac{-4\cdot3-7}{3+2}=\frac{-19}{5}\)
Câu 1:
f(x)=(2x-5)2=4x2-20x+25
=>tổng các hệ số là 4+(-20)+25=9
Câu 2 tính góc nào?
tính góc EAF đó bạn