Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(A=\frac{1}{31}+\frac{1}{32}+...+\frac{1}{90}\)
\(=\left(\frac{1}{31}+\frac{1}{32}+...+\frac{1}{45}\right)+\left(\frac{1}{46}+\frac{1}{47}+...+\frac{1}{90}\right)\)
Đặt \(B=\frac{1}{31}+\frac{1}{32}+...+\frac{1}{45}\)
Ta có: \(\frac{1}{31}>\frac{1}{45}\)
\(\frac{1}{32}>\frac{1}{45}\)
....................
\(\frac{1}{45}=\frac{1}{45}\)
\(\Rightarrow B>\frac{1}{45}.15\)
\(\Rightarrow B>\frac{1}{3}\)
Đặt \(C=\frac{1}{46}+\frac{1}{47}+...+\frac{1}{90}\)
Ta có: \(\frac{1}{46}>\frac{1}{90}\)
\(\frac{1}{47}>\frac{1}{90}\)
.....................
\(\frac{1}{90}=\frac{1}{90}\)
\(\Rightarrow C>\frac{1}{90}.45\)
\(\Rightarrow C>\frac{1}{2}\)
\(\Rightarrow B+C>\frac{1}{3}+\frac{1}{2}\)
Hay \(A>\frac{5}{6}\left(1\right)\)
Lại có: \(A=\left(\frac{1}{31}+...+\frac{1}{59}\right)+\left(\frac{1}{60}+...+\frac{1}{90}\right)\)
Đặt \(D=\frac{1}{31}+...+\frac{1}{59}\)
Ta có: \(\frac{1}{31}< \frac{1}{30}\)
. ...................
\(\frac{1}{59}< \frac{1}{30}\)
\(\Rightarrow D< \frac{1}{30}.60\)
\(\Rightarrow D< \frac{1}{2}\)
Đăt \(E=\frac{1}{60}+...+\frac{1}{90}\)
Ta có: \(\frac{1}{60}=\frac{1}{60}\)
.................
\(\frac{1}{90}< \frac{1}{60}\)
\(\Rightarrow E< \frac{1}{60}.31\)
\(\Rightarrow E< \frac{31}{60}< 1\)
\(\Rightarrow E< 1\)
\(\Rightarrow E+D< 1+\frac{1}{2}\)
Hay \(A< \frac{3}{2}\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\frac{5}{6}< A< \frac{3}{2}\)
\(\frac{x+1}{3}=\frac{9}{2}\)
\(\left(x+1\right).2=9.3\)
\(\left(x+1\right).2=27\)
\(x+1=27:2\)
\(x+1=13,5\)
\(x=13,5-1=12,5\)
vậy x = 12.5
\(\frac{x+1}{3}=\frac{9}{2}\)
\(\Leftrightarrow2\left(x+1\right)=3\times9\)
\(\Leftrightarrow2\left(x+1\right)=27\)
\(\Leftrightarrow x+1=\frac{27}{2}\)
\(\Leftrightarrow x=\frac{25}{2}\)
Hình như phần 1 đề sai.Nếu C nhỏ nhất thì n không có giá trị thuộc Z.Nếu C lớn nhất thì n=(-1)
2.a.x/7+1/14=(-1)/y
<=>2x/14+1/14=(-1)/y
<=>2x+1/14=(-1)/y
=>(2x+1).y=14.(-1)
<=>(2x+1).y=(-14)
(2x+1) và y là cặp ước của (-14).
(-14)=(-1).14=(-14).1
Ta có bảng giá trị:
2x+1 | -1 | 14 | 1 | -14 |
2x | -2 | 13 | 0 | -15 |
x | -1 | 13/2 | 0 | -15/2 |
y | 14 | -1 | -14 | 1 |
Đánh giá | chọn | loại | chọn | loại |
Vậy(x,y) thuộc{(-1;14);(0;-14)}
b.x/9+-1/6=-1/y
<=>2x/9+-3/18=-1/y
<=>2x+(-3)/18=-1/y
=>[2x+(-3)].y=-1.18
<=>(2x-3).y=-18
(2x-3) và y là cặp ước của -18
-18=-1.18=-18.1
Ta có bảng giá trị:
2x-3 | -1 | 18 | 1 | -18 |
2x | 2 | 21 | 4 | -15 |
x | 1 | 21/2 | 2 | -15/2 |
y | 18 | -1 | -18 | 1 |
Đánh giá | chọn | loại | chọn | loại |
Vậy(x;y) thuộc{(1;18);(4;-18)}
\(\frac{x-2}{2}-\frac{1+x}{3}=\frac{4-3x}{4}-1\)
\(\Leftrightarrow\frac{3\left(x-2\right)-2\left(1+x\right)}{6}=\frac{4-3x-4}{4}\)
\(\Leftrightarrow\frac{3x-6-2-2x}{6}=-\frac{3x}{4}\)
\(\Leftrightarrow\frac{x-8}{6}=-\frac{3x}{4}\)
\(\Leftrightarrow4x-32=-18x\)
\(\Rightarrow x=\frac{16}{11}\)
Bài 1:suy ra 5*(44-x)=3*(x-12)
220-5x=3x-36
-5x-3x=-36-220
-8x =-256
x=32
Bài 2 :Đặt a/3=b/4=k
suy ra a=3k ; b=4k
Ta có a*b=48
suy ra 3k*4k=48
12k =48
k=4
suy ra a=3*4=12
b=4*4 =16
Bài 3: áp dụng tính chất dãy số bằng nhau ta được
a+b+c+d/3+5+7+9 = 12/24=0,5
suy ra a=1,5; b=2,5; c=3,5; d=4,
a)x/7=-12/21
⇒ x/7=-4/7
⇒ x =-4
vậy x= -4
b)-9/16=-x/48
⇒-27/48=-x/48
⇒ -x =-27
⇒ x =27
2. Tìm x, y
x/7=-2/ Y
⇒ x. y=(-2).7
⇒ x.y=-14
Mà x, y thuộc Z
⇒ x, y là cặp ước của -14
⇒( x, y) €{(-1,14),(1,-14),(14,-1),(-14,1), (2,-7),(-2,7),(7,-2),(-7,2)}
1.
a. Vì \(\frac{x}{7}=\frac{-12}{21}\) nên \(x.21=7.\left(-12\right)\)
Suy ra : \(x=\frac{7.\left(-12\right)}{21}=\frac{-84}{21}=-4\)
Vậy \(x=-4\)
b. Vì \(\frac{-9}{16}=\frac{-x}{48}\) nên \(-9.48=16.\left(-x\right)\)
Suy ra : \(-x=\frac{\left(-9\right).48}{16}=\frac{-432}{16}=-27\)
Vậy \(-x=-27\Rightarrow x=27\)
2.
Vì \(\frac{x}{7}=\frac{-2}{y}\) nên \(x.y=7.\left(-2\right)\)\(\Rightarrow x.y=-14\)
Suy ra : \(x.y\in U\left(-14\right)=\left\{1;-1;2;-2;7;-7;14;-14\right\}\)
hoặc\(\Rightarrow x.y=1.\left(-14\right)\) hoặc \(x.y=\left(-1\right).14\)hoặc \(x.y=2.\left(-7\right)\)hoặc \(x.y=\left(-2\right).7\)
Vậy (x=1 và y= - 14 ) hoặc (x= -1 và y=14) hoặc (x=2 và y= -7) hoặc (x= -2 và y=7)