Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 :
\((x-2y)(y-1)=5\)
\(\Rightarrow y-1\inƯ(5)=\left\{\pm1;\pm5\right\}\)
Lập bảng :
y - 1 | 1 | -1 | 5 | -5 |
x - 2y | -5 | 5 | -1 | 1 |
y | 2 | 0 | 6 | -4 |
x | -5 | 9 | -9 | 13 |
Vậy \((x,y)\in\left\{(2,-5);(0,9);(6,-9);(-4,13)\right\}\)
Bài 1:Giải
Từ \(\left(x-2y\right)\left(y-1\right)=5\)
\(\Rightarrow\)\(x-2y\)và \(y-1\)là các ước của 5
Mà \(Ư\left(5\right)=\left\{-1;1;-5;5\right\}\)
Ta có bảng sau:
y-1 | 1 | -1 | 5 | -5 |
y | 2(thỏa mãn) | 0(thỏa mãn) | 6(thỏa mãn) | -4(thỏa mãn) |
x - 2y | 5 | -5 | 1 | -1 |
x | 9(thỏa mãn) | -5(thỏa mãn) | 13(thỏa mãn) | -9(thỏa mãn) |
Vậy các cặp ( x;y ) cần tìm là:( 9;2 ),( -5;0 ),( 13;6 ),( -9;-4 )
Câu 1:
a) Ta có: x-3 là ước của 13
\(\Leftrightarrow x-3\inƯ\left(13\right)\)
\(\Leftrightarrow x-3\in\left\{1;-1;13;-13\right\}\)
hay \(x\in\left\{4;2;16;-10\right\}\)(thỏa mãn)
Vậy: \(x\in\left\{4;2;16;-10\right\}\)
b) Ta có: \(x^2-7\) là ước của \(x^2+2\)
\(\Leftrightarrow x^2+2⋮x^2-7\)
\(\Leftrightarrow x^2-7+9⋮x^2-7\)
mà \(x^2-7⋮x^2-7\)
nên \(9⋮x^2-7\)
\(\Leftrightarrow x^2-7\inƯ\left(9\right)\)
\(\Leftrightarrow x^2-7\in\left\{1;-1;3;-3;9;-9\right\}\)
mà \(x^2-7\ge-7\forall x\)
nên \(x^2-7\in\left\{1;-1;3;-3;9\right\}\)
\(\Leftrightarrow x^2\in\left\{8;6;10;4;16\right\}\)
\(\Leftrightarrow x\in\left\{2\sqrt{2};-2\sqrt{2};-\sqrt{6};\sqrt{6};\sqrt{10};-\sqrt{10};2;-2;4;-4\right\}\)
mà \(x\in Z\)
nên \(x\in\left\{2;-2;4;-4\right\}\)
Vậy: \(x\in\left\{2;-2;4;-4\right\}\)
Câu 2:
a) Ta có: \(2\left(x-3\right)-3\left(x-5\right)=4\left(3-x\right)-18\)
\(\Leftrightarrow2x-6-3x+15=12-4x-18\)
\(\Leftrightarrow-x+9+4x+6=0\)
\(\Leftrightarrow3x+15=0\)
\(\Leftrightarrow3x=-15\)
hay x=-5
Vậy: x=-5
CÂU 10:
a, -x - 84 + 214 = -16 b, 2x -15 = 40 - ( 3x +10 )
x = - ( -16 -214 + 84 ) 2x + 3x = 40 -10 +15
x = 16 + 214 - 84 5x = 45
x = 146 x = 9
c, \(|-x-2|-5=3\) d, ( x - 2)(2x + 1) = 0
\(|-x-2|=8\) => x - 2 = 0 hoặc 2x + 1 = 0
=> - x - 2 = 8 hoặc x + 2 = 8 \(\orbr{\begin{cases}x-2=0\\2x+1=0\end{cases}=>}\orbr{\begin{cases}x=2\\x=-\frac{1}{2}\end{cases}}\)
\(\orbr{\begin{cases}-x-2=8\\x+2=8\end{cases}=>\orbr{\begin{cases}x=-10\\x=6\end{cases}}}\)
\(\text{- ( 2789 _ 435 ) + ( 1789 _ 1435 )}\)
\(=-2789+435+1789-1435\)
\(=\left(-2789+1789\right)+\left(435-1435\right)\)
\(=-1000+-1000\)
\(=-2000\)
\(=-\left(-2010\right)+36.41-36.\left(-59\right)\)
\(=2010+36.\left(41+59\right)\)
\(=2010+36.100\)
\(=2010+3600\)
\(=5610\)
\(-75.\left(18-65\right)-65.\left(75-18\right)\)
\(=-75.18+75.65-65.75+65.18\)
\(=18.\left(-75+65\right)+75.\left(65-65\right)\)
\(=18.\left(-10\right)+75.0\)
\(=-180\)
\(-15:x=3\)
\(x=-15:3\)
\(x=-5\)
\(-3x+8=7\)
\(-3x=-1\)
\(x=\frac{1}{3}\)
\(\left(x-6\right).\left(7-x\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-6=0\\7-x=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=6\\x=7\end{cases}}}\)
\(\Rightarrow x\in\left\{6;7\right\}\)
\(2.\left(x-3\right)-3.\left(x-5\right)=4.\left(3-x\right)-18\)
\(2x-6-3x+15=12-4x-18\)
\(2x-3x+4x=12-18-15+6\)
\(3x=-15\)
\(\Rightarrow x=-5\)
\(-a.\left(c-d\right)-d.\left(a+c\right)=-c.\left(a+d\right)\)
\(-a.c+a.d-d.a+-d.c=-c.\left(a+d\right)\)
\(-c.\left(a+d\right)+a.\left(d-d\right)=-c.\left(a+d\right)\)
\(-c.\left(a+d\right)+a.0=-c.\left(a+d\right)\)
\(\Rightarrow-c.\left(a+d\right)=-c.\left(a+d\right)\)
(3a+2).(2a–1)+(3–a).(6a+2)–17.(a–1)
=6a²−3a+4a−2+18a+6−6a²−2a−17a+17
=(6a²−6a²)+(−3a+4a+18a−2a−17a)+(17−2+6)
=0+0+21
=21
học tốt
a)\(\frac{x+11}{x-6}=\frac{x-6+17}{x-6}=\frac{x-6}{x-6}+\frac{17}{x-6}\)
=>x-6\(\in\) Ư(17)
x-6 | 1 | -1 | 17 | -17 |
x | 7 | 5 | 23 | -11 |
\(a,2x+1⋮x-2\)
\(=>2.\left(x-2\right)+5⋮x-2\)
Do \(2.\left(x-2\right)⋮x-2\)
\(=>5⋮x-2\)
\(=>x-2\inƯ\left(5\right)\)
Nên ta có bảng sau :
x-2 | 1 | 5 | -1 | -5 |
x | 3 | 7 | 1 | -3 |
Vậy ...
\(b,3x+5⋮x\)
Do \(3x⋮x=>5⋮x\)
\(=>x\inƯ\left(5\right)\)
Nên ta có bảng sau :
x | 1 | 5 | -1 | -5 |
Vậy ...
\(c,4x+1⋮2x+3\)
\(=>2.\left(2x+3\right)-5⋮2x+3\)
Do \(2.\left(2x+3\right)⋮2x+3\)
\(=>5⋮2x+3\)
\(=>2x+3\inƯ\left(5\right)\)
Nên ta có bảng sau :
2x+3 | 1 | 5 | -1 | -5 |
2x | -2 | 2 | -4 | -8 |
x | -1 | 1 | -2 | -4 |
Vậy ...
a) Ta có: 2x+1=2(x-2)+5
Để 2x+1 chia hết cho x-2 thì 2(x-2)+5 chia hết cho x-2
Vì 2(x-2) chia hết cho x-2
=> 5 chia hết cho x-2
Vì x thuộc Z => z-2 thuộc Ư (5)={-5;-1;1;5}
Nếu x-2=-5 => x=-3
Nếu x-2=-1 => x=1
Nếu x-2=1 => x=3
Nếu x-1=5 => x=6
b) Ta có 3x chia hết cho x với mọi x
=> Để 3x+5 chia hết cho x thì 5 chia hết cho x
Vì x thuộc Z => x thuộc Ư (5)={-5;-1;1;5}
c) Ta có: 4x+11=2(2x+3)+5
Để 4x+11 chia hết cho 2x+3 thì 2(2x+3)+5 chia hết cho 2x+3
Vì 2(2x+3) chia hết cho 2x+3 => 5 chia hết cho 2x+3
Vì x thuộc Z => 2x+3 thuộc Ư (5)={-5;-1;1;5}
Nếu 2x+3=-5 => 2x=-8 => x=-4
Nếu 2x+3=-1 => 2x=-4 => x=-2
Nếu 2x+3=1 => 2x=-2 => x=-1
Nếu 2x+3=5 => 2x=2 => x=1
a) 2(x - 3) - 3(x - 5) = 4(3 - x) - 18
=> 2x - 6 - 3x + 15 = 12 - 4x - 18
=> -x + 9 = -6 - 4x
=> -x + 4x = -6 + 9
=> 3x = 3
=> x = 3 : 3 = 1
2. -a(c - d) - d(a + c)
= -ac + ad - ad - dc
= (-ac - dc) + (ad - ad)
= -ac + (-dc)
= -c.(a + d)