K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 11 2017

a chia cho 4, 5, 6 dư 1

nên (a - 1) chia hết cho 4, 5, 6 

=> (a - 1) là bội chung của (4,5,6)

=> a - 1 = 60n 

=> a = 60n+1 

với 1 ≤ n < (400-1)/60 = 6,65 mặt khác a chia hết cho 7 

=> a = 7m 

Vậy 7m = 60n + 1 có 1 chia 7 dư 1

=> 60n chia 7 dư 6 mà 60 chia 7 dư 4 

=> n chia 7 dư 5 mà n chỉ lấy từ 1 đến 6 

=> n = 5 a = 60.5 + 1 = 301 

2 tháng 8 2017

1. Gọi số tự nhiên cần tìm là \(\left(a\in N\right)\)và \(a-1\)là \(BC\)của 4 ; 5 ; 6 và \(a⋮7\).Ta có:  

\(BCNN\left(4;5;6\right)=60.\)

\(BC\left(4;5;6\right)=\left\{0;60;120;180;240;300;360;420;....\right\}\)

\(\Rightarrow a-1\in\left\{0;60;120;180;240;300;360;420\right\}\)

\(\Leftrightarrow a\in\left\{1;61;121;181;241;301;361;....\right\}\)

Vì \(\Rightarrow301⋮7\Rightarrow\)số tự nhiên cần tìm là : 301 

2 tháng 8 2017

Số cần tìm là 301

30 tháng 11 2015

kaitovskudo: copy câu tl kiểu gì?  

30 tháng 11 2015

a : b = 4 (dư 35)

=> a = 4b + 35 và b > 35

Vì a < 200 nên 4b + 35 < 200 => 4b < 165 => b < 42 

Mà b > 35 nên b có thể bằng 36; 37 ; 38; 39; 40; 41

+) Nếu b = 36 thì a = 4.36 + 35 = 179

+) Nếu b = 37 thì a = 4.37 + 35 = 183

các trường hợp lại tương tự.

4 tháng 8 2016

1)

\(222^{333}\)   và  \(333^{222}\)

\(222^{333}=\left(222^3\right)^{111}=10941048^{111}\)

\(333^{222}=\left(333^2\right)^{111}=110889^{111}\)

 vì \(10941048^{111}>110889^{111}\Rightarrow222^{333}>333^2\)

4 tháng 8 2016

 2)

\(1x8y2⋮36\Rightarrow1x8y2⋮4;1x8y2⋮9\)

\(1x8y2⋮4\Leftrightarrow y2⋮\Leftrightarrow y=\left\{1;5;9\right\}\)

-nếu\(y=1\Rightarrow1x812⋮9\Leftrightarrow\left(1+x+8+1+2\right)⋮9\Leftrightarrow12+x⋮9\Leftrightarrow x=6\)nếu \(y=5\Rightarrow1x852⋮9\Leftrightarrow\left(1+x+8+5+2\right)⋮9\Leftrightarrow16+x⋮9\Leftrightarrow x=2\)nếu \(y=9\Rightarrow1x892⋮9\Leftrightarrow\left(1+x+8+9+2\right)⋮9\Leftrightarrow20+x⋮9\Leftrightarrow x=7\) 

 

15 tháng 12 2016

Bài 1: a) => tập hợp a = { 108;117 }

b) => tập hợp b = { 90;100;110 }

29 tháng 6 2016

Số tự nhiên a chia 37 dư 1 ; chia 39 dư 14 thì: a - 1 chia hết cho 37 và a - 14 chia hết cho 39. Khi đó:

  • a + 961 = (a - 1) + 37*26 chia hết cho 37
  • a + 961 = (a - 14) + 39*25 chia hết cho 39
  • Vậy a + 961 chia hết cho 37 và 39 và có dạng a + 961 = 37*39k = 1443k => a nhỏ nhất khi k = 1 và => a = 1443 - 961 = 482.

ĐS: a = 482.