Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 4:
\(A=\frac{2}{3.5}+\frac{2}{5.7}+...........+\frac{2}{2005.2007}\)
\(=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+............+\frac{1}{2005}-\frac{1}{2007}\)
\(=\frac{1}{3}-\frac{1}{2007}\)
\(=\frac{669}{2007}-\frac{1}{2007}=\frac{668}{2007}\)
\(A=\frac{2}{15}+\frac{2}{35}+\frac{2}{63}+\frac{2}{99}+.....+\frac{2}{4024035}\)
\(=\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+......+\frac{2}{2005.2007}\)
\(=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-.......+\frac{1}{2005}-\frac{1}{2007}\)
\(=\frac{1}{3}-\frac{1}{2007}\)
\(=\frac{668}{2007}\)
a) 2A=2^2+2^3+...+2^100
A= 2A-A= 2^100-2 không phải là số chính phương
A+2 = 2^100 là số chính phương
b) 20.448 =2.2.5.296 = 298.5 > 298.4 > 2100 > A
c) 2100 - 2 = 299.2-2=833.2 -2 => n rỗng
d) ta có: 24k chia 7 dư 2
2100-2 = 24.25-2 chia hết chp 7
e) ta có: 24k chia 6 dư 4
2100-2 = 24.25-2 chia 6 dư 2
f) ta có: 24k tận cùng 6
2100-2 = 24.25-2 tận cùng 4
10 \(\le\)n \(\le\)99 => 21 < 2n + 1 < 199 và 31 < 3n + 1 < 298
Vì 2n + 1 là số lẻ mà 2n + 1 là số chính phương
=> 2n + 1 thuộc { 25 ; 49 ; 81 ; 121 ; 169 } tương ứng số n thuộc { 12; 24; 40; 60; 84 } ( 1 )
Vì 3n + 1 là số chính phương và 31 < 3n + 1 < 298
=> 3n + 1 thuộc { 49 ; 64 ; 100 ; 121 ; 169 ; 196 ; 256 ; 289 } tương ứng n thuộc { 16 ; 21 ; 33 ; 40 ; 56 ; 65 ; 85 ; 96 } ( 2 )
Từ 1 và 2 => n = 40 thì 2n + 1 và 3n + 1 đều là số chính phương
đăng mà k ai trả lời
bạn ra 1 lần nhiều thế này người ta ngại trả lời lắm