K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 2 2017

\(\frac{3n+2}{n-1}=\frac{3n-3+5}{n-1}=\frac{3\left(n-1\right)+5}{n-1}=3+\frac{5}{n-1}\)

Để \(3+\frac{5}{n-1}\) là số nguyên <=> \(\frac{5}{n-1}\) là số nguyên

=> n - 1 thuộc Ư(5) = { - 5; - 1; 1; 5 }

Ta có bảng sau :

n - 1- 5- 11  5  
n- 4026

Vậy n = { - 4 ; 0 ; 2 ; 6 }

19 tháng 4 2017

bai 3

\(A=\frac{10^{2004}+1}{10^{2005}+1}\)

\(10A=\frac{10^{2004}+10}{10^{2005}+1}\)

\(10A=1\frac{9}{10^{2005}+1}\)

\(B=\frac{10^{2005}+1}{10^{2006}+1}\)

\(10B=\frac{10^{2005}+10}{10^{2006}+1}\)

\(10B=1\frac{9}{10^{2006}+1}\)

 Vì \(1\frac{9}{10^{2005}+1}>1\frac{9}{10^{2006}+1}\)

\(\Rightarrow10A>10B\)

\(\Rightarrow A>B\)

19 tháng 4 2017

bai 4

\(A=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+....+\frac{1}{3^8}\)

\(\frac{1}{3}A=\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+....+\frac{1}{3^9}\)

\(A-\frac{1}{3}A=\frac{1}{3}-\frac{1}{3^9}\)

3 tháng 2 2018

a) Ta có: \(\frac{13}{57}=1-\frac{44}{57}\)

              \(\frac{29}{73}=1-\frac{44}{73}\)

Ta thấy:    \(\frac{44}{57}>\frac{44}{73}\)\(\Rightarrow\)\(1-\frac{44}{57}< 1-\frac{44}{73}\)

Vậy   \(\frac{13}{57}< \frac{29}{73}\)

27 tháng 3 2017

Mọi người tk mình đi mình đang bị âm nè!!!!!!

Ai tk mình mình tk lại nha !!!

27 tháng 3 2017

đếu có câu trả lời ah

16 tháng 8 2020

a,19/7=5/7 +2

2>7/9 => 19/7>7/9

b, 72/73=1- 1/73

98/99=1- 1/99

1/73>1/99

c,19/18=1+ 1/18

2005/2004=1+ 1/2004

1/18>1/2004

d, 72/73=(58+14)/73=58/73 + 14/73

58/73>58/99

=> 72/73>58/99

25 tháng 6 2015

Xét A trước ta có 

\(A=\frac{2005^{2005}+1}{2005^{2006}+1}\)ta có \(2005.A=\frac{2005.\left(2005^{2005}+1\right)}{2005^{2006}+1}\)

\(2005A=\frac{2005^{2006}+2005}{2005^{2006}+1}\)\(2005A=\frac{2005^{2006}+1+2004}{2005^{2006}+1}\)

\(2005.A=1+\frac{2004}{2005^{2006}+1}\)

Xét B ta có 

\(B=\frac{2005^{2004}+1}{2005^{2005}+1}\)ta có \(2005B=\frac{2005\left(2005^{2004}+1\right)}{2005^{2005}+1}\)

\(2005B=\frac{2005^{2005}+2005}{2005^{2005}+1}\)\(2005B=\frac{2005^{2005}+1+2004}{2005^{2005}+1}\)

\(2005B=1+\frac{2004}{2005^{2005}+1}\)

ta có vì 2005A<2005B

từ đó suy ra A<B

 nhớ **** đó